首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2681篇
  免费   255篇
  国内免费   257篇
  2024年   24篇
  2023年   184篇
  2022年   193篇
  2021年   255篇
  2020年   193篇
  2019年   189篇
  2018年   134篇
  2017年   105篇
  2016年   96篇
  2015年   143篇
  2014年   179篇
  2013年   194篇
  2012年   120篇
  2011年   131篇
  2010年   84篇
  2009年   96篇
  2008年   102篇
  2007年   107篇
  2006年   88篇
  2005年   78篇
  2004年   46篇
  2003年   54篇
  2002年   49篇
  2001年   54篇
  2000年   25篇
  1999年   26篇
  1998年   20篇
  1997年   19篇
  1996年   20篇
  1995年   11篇
  1994年   23篇
  1993年   23篇
  1992年   14篇
  1991年   16篇
  1990年   6篇
  1989年   4篇
  1988年   5篇
  1987年   6篇
  1986年   7篇
  1985年   10篇
  1984年   9篇
  1983年   8篇
  1982年   7篇
  1981年   9篇
  1980年   7篇
  1979年   6篇
  1978年   4篇
  1975年   5篇
  1973年   1篇
  1972年   1篇
排序方式: 共有3193条查询结果,搜索用时 15 毫秒
71.
转化生长因子β(transforming growth factorβ,TGF-β)是一种多功能的细胞因子,能够调控细胞增殖、分化、黏附、迁移及凋亡等行为,在胚胎发育过程和成体组织稳态维持中发挥重要的作用。而在许多疾病状态下,特别是在癌症中,TGF-β不仅能够影响肿瘤细胞的增殖与转移,其对于肿瘤微环境的调控与塑造也受到越来越多的关注。肿瘤微环境是指肿瘤在发生和发展过程中所处的内环境,由肿瘤细胞本身、相邻正常组织中的间质细胞,以及这些细胞所释放的众多细胞因子等共同组成。肿瘤微环境是肿瘤发展的重要机制,也是肿瘤临床治疗领域亟待探索的关键问题。TGF-β是调节肿瘤微环境组成和功能的主要参与者之一。在本综述中,将着重讨论TGF-β对于肿瘤微环境中的免疫监视机制及肿瘤细胞外基质的主要影响。即TGF-β对于构成先天性和获得性抗肿瘤免疫应答的各种类群的免疫细胞具有广泛的调控作用,从而削弱宿主的肿瘤免疫监视功能。同时,TGF-β通过促进肿瘤相关成纤维细胞的产生,以及肿瘤细胞外基质的纤维化,有助于肿瘤的恶变和转移。此外,还介绍了通过阻断肿瘤微环境中TGF-β信号通路进行肿瘤治疗的主要策略及独特优势。而未来进一步解析TGF-β信号在肿瘤微环境中的复杂调控作用,并建立有效的靶向干预方法对于开发高效的抗肿瘤药物具有重要的意义。  相似文献   
72.
This work aimed to investigate miR‐93‐5p expression in tumor tissue and its in vitro effects in colorectal cancer (CRC) by targeting programmed death ligand‐1 (PD‐L1). MiR‐93‐5p and PD‐L1 expression was detected in CRC and adjacent normal tissues by quantitative real‐time polymerase chain reaction and immunohistochemistry. The correlation between miR‐93‐5p and PD‐L1 was validated by a dual‐luciferase reporter assay. HCT116 and SW480 cells were divided into blank, miR‐NC, miR‐93‐5p mimics, miR‐93‐5p inhibitor, PD‐L1 small interfering RNA (siRNA) and miR‐93‐5p inhibitor + PD‐L1 siRNA groups, and wound‐healing and transwell assays were performed to detect cell migration and invasion, respectively. Protein expression was measured by western blotting. The secretion of cytokines was detected in the CRC cell/T coculture models. MiR‐93‐5p was downregulated in CRC tissues with upregulated PD‐L1. In PD‐L1‐negative patients, miR‐93‐5p expression was increased compared with that in PD‐L1‐positive patients. MiR‐93‐5p and PD‐L1 expression levels were associated with the tumor differentiation, lymphatic metastasis, TNM, Duke's stage, and prognosis of CRC. PD‐L1 siRNA weakened the migration and invasion abilities via decreased expression of matrix metalloproteinase‐1 (MMP‐1), ‐2, and ‐9, and these effects were abolished by the miR‐93‐5p inhibitor. Additionally, anti‐PD‐L1 upregulated the expressions of interleukin‐2 (IL‐2), tumor necrosis factor‐α (TNF‐α), and interferon γ (IFN‐γ) in the coculture of T cells with CRC cells, but downregulated the expressions of IL‐1β, IL‐10, and TGF‐β. However, these changes were partially reversed by miR‐93‐5p inhibition. miR‐93‐5p is expected to be a novel target for CRC treatment since it decreases the migration and invasion, as well as the immune evasion, of CRC cells via targeting PD‐L1.  相似文献   
73.
Sepsis is the major cause of mortality in the intensive care unit. The aim of this study was to identify the key prognostic biomarkers of abnormal expression and immune infiltration in sepsis. In this study, a total of 36 differentially expressed genes were identified to be mainly involved in a number of immune-related Gene Ontology terms and Kyoto Encyclopedia of Genes and Genomes pathways. The hub genes (MMP9 and C3AR1) were significantly related to the prognosis of sepsis patients. The immune infiltration analysis indicated a significant difference in the relative cell content of naive B cells, follicular Th cells, activated NK cells, eosinophils, neutrophils and monocytes between sepsis and normal controls. Weighted gene co-expression network analysis and a de-convolution algorithm that quantifies the cellular composition of immune cells were used to analyse the sepsis expression data from the Gene Expression Omnibus database and to identify modules related to differential immune cells. CEBPB is the key immune-related gene that may be involved in sepsis. Gene set enrichment analysis revealed that CEBPB is involved in the processes of T cell selection, B cell–mediated immunity, NK cell activation and pathways of T cells, B cells and NK cells. Therefore, CEBPB may play a key role in the biological and immunological processes of sepsis.  相似文献   
74.
ABSTRACT

A novel compound, (R)-4-ethoxy-2-hydroxy-4-oxobutanoic acid (1), and six known compounds (27) were isolated from the fruiting bodies of the wild edible mushroom Leucopaxillus giganteus. The planar structure of 1 was determined by the interpretation of spectroscopic data analysis. The absolute configuration of 1 was determined by comparing specific rotation of the synthetic compounds. In the plant regulatory assay, the isolated compounds (17) and the chemically prepared compounds (810) were evaluated their biological activity against the lettuce (Lactuca sativa) growth. Compounds 1 and 310 showed the significant regulatory activity of lettuce growth. 1 showed the strongest inhibition activity among the all the compounds tested. In the lung cancer assay, all the compounds were assessed the mRNA expression of Axl and immune checkpoints (PD-L1, PD-L2) in the human A549 alveolar epithelial cell line by RT-PCR. Compounds 110 showed significant inhibition activity against Axl and/or immune checkpoint.  相似文献   
75.
Despite widespread variability and redundancy abounding animal immunity, little is currently known about the rate of evolutionary convergence (functionally analogous traits not inherited from a common ancestor) in host molecular adaptations to parasite selective pressures. Toll‐like receptors (TLRs) provide the molecular interface allowing hosts to recognize pathogenic structures and trigger early danger signals initiating an immune response. Using a novel combination of bioinformatic approaches, here we explore genetic variation in ligand‐binding regions of bacteria‐sensing TLR4 and TLR5 in 29 species belonging to the tit family of passerine birds (Aves: Paridae). Three out of the four consensual positively selected sites in TLR4 and six out of 14 positively selected positions in TLR5 were located on the receptor surface near the functionally important sites, and based on the phylogenetic pattern evolved in a convergent (parallel) manner. This type of evolution was also seen at one N‐glycosylation site and two positively selected phosphorylation sites, providing the first evidence of convergence in post‐translational modifications in evolutionary immunology. Finally, the overall mismatch between phylogeny and the clustering of surface charge distribution demonstrates that convergence is common in overall TLR4 and TLR5 molecular phenotypes involved in ligand binding. Our analysis did not reveal any broad ecological traits explaining the convergence observed in electrostatic potentials, suggesting that information on microbial symbionts may be needed to explain TLR evolution. Adopting state‐of‐the‐art predictive structural bionformatics, we have outlined a new broadly applicable methodological approach to estimate the functional significance of positively selected variation and test for the adaptive molecular convergence in protein‐coding polymorphisms.  相似文献   
76.
Pathogen‐mediated balancing selection is commonly considered to play an important role in the maintenance of genetic diversity, in particular in immune genes. However, the factors that may influence which immune genes are the targets of such selection are largely unknown. To address this, here we focus on Pattern Recognition Receptor (PRR) signalling pathways, which play a key role in innate immunity. We used whole‐genome resequencing data from a population of bank voles (Myodes glareolus) to test for associations between balancing selection, pleiotropy and gene function in a set of 123 PRR signalling pathway genes. To investigate the effect of gene function, we compared genes encoding (a) receptors for microbial ligands versus downstream signalling proteins, and (b) receptors recognizing components of microbial cell walls, flagella and capsids versus receptors recognizing features of microbial nucleic acids. Analyses based on the nucleotide diversity of full coding sequences showed that balancing selection primarily targeted receptor genes with a low degree of pleiotropy. Moreover, genes encoding receptors recognizing components of microbial cell walls etc. were more important targets of balancing selection than receptors recognizing nucleic acids. Tests for localized signatures of balancing selection in coding and noncoding sequences showed that such signatures were mostly located in introns, and more evenly distributed among different functional categories of PRR pathway genes. The finding that signatures of balancing selection in full coding sequences primarily occur in receptor genes, in particular those encoding receptors for components of microbial cell walls etc., is consistent with the idea that coevolution between hosts and pathogens is an important cause of balancing selection on immune genes.  相似文献   
77.
In the present study, we explored the clinical and immunological characteristics of 575 uterine corpus endometrial carcinoma (UCEC) samples obtained from The Cancer Genome Atlas (TCGA) using the ESTIMATE and CIBERSORT algorithms. First, Kaplan–Meier and univariate Cox regression analyses indicated that the immune cell score was a prognostic factor for overall survival (OS) and recurrence-free survival (RFS). Multivariate Cox regression analysis further revealed that the immune cell score was an independent prognostic factor for UCEC patients. Second, we investigated the correlation between the infiltration levels of 22 types of immune cells and the immune score. Survival analysis based on the 22 immune cell types showed that higher levels of regulatory T cell, activated NK cell, and follicular helper T-cell infiltration were associated with longer OS, while higher levels of CD8+ T cell and naive B-cell infiltration were associated with longer RFS. Next, we performed differential expression and prognosis analyses on 1534 immune-related genes and selected five from 14 candidate genes to construct a prognostic prediction model. The area under the receiver-operating characteristic (ROC) curve (AUC) for 3- and 5-year survival were 0.711 and 0.728, respectively. Further validation using a stage I–II subgroup showed similar results, presenting AUC values for 3- and five-year survival of 0.677 and 0.692, respectively. Taken together, the present study provides not only a deeper understanding of the relationship between UCEC and the immune landscape but also guidance for the future development of UCEC immunotherapy.  相似文献   
78.
Background: Glycolysis was a representative hallmark in the tumor microenvironment (TME), and we aimed to explore the correlations between glycolysis with immune activity and clinical traits in bladder urothelial carcinoma (BLCA).Methods: Our study obtained glycolysis scores for each BLCA samples from TCGA by a single-sample gene set enrichment analysis (ssGSEA) algorithm, based on a glycolytic gene set. The relationship between glycolysis with prognosis, clinical characteristics, and immune function were investigated subsequently.Results: We found that enhanced glycolysis was associated with poor prognosis and metastasis in BLCA. Moreover, glycolysis had a close correlation with immune function, and enhanced glycolysis increased immune activities. In other words, glycolysis had a positive correlation with immune activities. Immune checkpoints such as IDO1, CD274, were up-regulated in high-glycolysis group as well.Conclusion: We speculated that in BLCA, elevated glycolysis enhanced immune function, which caused tumor cells to overexpress immune checkpoints to evade immune surveillance. Inhibition of glycolysis might be a promising assistant for immunotherapy in bladder cancer.  相似文献   
79.
80.
刘云杨  蒋帅  李谦  孔毅 《生物工程学报》2021,37(11):3988-4000
Kunitz型丝氨酸蛋白酶抑制剂是一类普遍存在的蛋白酶抑制剂,在体内各项生命活动中扮演着重要角色。这类抑制剂结构稳定且富有特色,通常具有一个或几个串联存在的Kunitz结构域,能够以类似底物的方式与丝氨酸蛋白酶结合,从而抑制酶的活性。在功能方面,Kunitz型丝氨酸蛋白酶抑制剂参与凝血和纤维蛋白溶解、肿瘤免疫、炎症调节以及抵抗细菌、真菌感染等过程。文中就Kunitz型丝氨酸蛋白酶抑制剂研究进展作一综述,为新型Kunitz型丝氨酸蛋白酶抑制剂的开发提供研究思路。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号