首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   697篇
  免费   115篇
  国内免费   92篇
  2024年   2篇
  2023年   21篇
  2022年   9篇
  2021年   23篇
  2020年   28篇
  2019年   41篇
  2018年   39篇
  2017年   43篇
  2016年   36篇
  2015年   53篇
  2014年   46篇
  2013年   51篇
  2012年   32篇
  2011年   31篇
  2010年   25篇
  2009年   41篇
  2008年   46篇
  2007年   41篇
  2006年   37篇
  2005年   26篇
  2004年   25篇
  2003年   20篇
  2002年   21篇
  2001年   21篇
  2000年   16篇
  1999年   19篇
  1998年   11篇
  1997年   12篇
  1996年   9篇
  1995年   5篇
  1994年   10篇
  1993年   8篇
  1992年   12篇
  1991年   6篇
  1990年   3篇
  1989年   6篇
  1988年   3篇
  1987年   2篇
  1986年   2篇
  1985年   5篇
  1984年   2篇
  1983年   3篇
  1982年   3篇
  1981年   2篇
  1980年   2篇
  1979年   2篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
排序方式: 共有904条查询结果,搜索用时 15 毫秒
121.
122.
Background: The abundance of white-tailed deer (Odocoileus virginianus) in the eastern United States has escalated during the twentieth century, potentially impacting plant communities.

Methods: We measured understorey plant cover and biomass five years after excluding deer from mature forests of three ecological regions in Mississippi, USA. We extended the significance of P values to 0.10 to detect developing impacts.

Results: Deer impacts were limited and varied by ecological region. We recorded 151 species in cover transects. Consistent exclosure treatment effects were detected in two regions where there was greater cover of two deer forages and less cover of three non-forages. Species richness was greater in exclosures in one region, but otherwise species richness and diversity indices did not differ. We recorded 127 species in biomass quadrats. Exclosure treatment effects on biomass were inconsistent. Out of five species with significant differences, three had more biomass in controls, including two deer forages. Except for greater total biomass in controls of one region, there were no differences by growth form or total vegetation for canopy coverage or biomass. Ordination of community canopy cover demonstrated similarity of paired exclosure and controls.

Conclusions: Exclosure treatment effects on canopy cover and species richness in two regions indicated limited negative impacts from deer foraging. A time frame of more than five years may be required for exclusion to allow recovery of vegetation, even with relatively open canopies and a long growing season.  相似文献   

123.
Conservation efforts for threatened or endangered species are challenging because the multi‐scale factors that relate to their decline or inhibit their recovery are often unknown. To further exacerbate matters, the perceptions associated with the mechanisms of species decline are often viewed myopically rather than across the entire species range. We used over 80 years of fish presence data collected from the Great Plains and associated ecoregions of the United States, to investigate the relative influence of changing environmental factors on the historic and current truncated distributions of the Arkansas River shiner Notropis girardi. Arkansas River shiner represent a threatened reproductive ecotype considered especially well adapted to the harsh environmental extremes of the Great Plains. Historic (n = 163 records) and current (n = 47 records) species distribution models were constructed using a vector‐based approach in MaxEnt by splitting the available data at a time when Arkansas River shiner dramatically declined. Discharge and stream order were significant predictors in both models; however, the shape of the relationship between the predictors and species presence varied between time periods. Drift distance (river fragment length available for ichthyoplankton downstream drift before meeting a barrier) was a more important predictor in the current model and indicated river segments 375–780 km had the highest probability of species presence. Performance for the historic and current models was high (area under the curve; AUC > 0.95); however, forecasting and backcasting to alternative time periods suggested less predictive power. Our results identify fragments that could be considered refuges for endemic plains fish species and we highlight significant environmental factors (e.g., discharge) that could be manipulated to aid recovery.  相似文献   
124.
Rainfall controls fire in tropical savanna ecosystems through impacting both the amount and flammability of plant biomass, and consequently, predicted changes in tropical precipitation over the next century are likely to have contrasting effects on the fire regimes of wet and dry savannas. We reconstructed the long‐term dynamics of biomass burning in equatorial East Africa, using fossil charcoal particles from two well‐dated lake‐sediment records in western Uganda and central Kenya. We compared these high‐resolution (5 years/sample) time series of biomass burning, spanning the last 3800 and 1200 years, with independent data on past hydroclimatic variability and vegetation dynamics. In western Uganda, a rapid (<100 years) and permanent increase in burning occurred around 2170 years ago, when climatic drying replaced semideciduous forest by wooded grassland. At the century time scale, biomass burning was inversely related to moisture balance for much of the next two millennia until ca. 1750 ad , when burning increased strongly despite regional climate becoming wetter. A sustained decrease in burning since the mid20th century reflects the intensified modern‐day landscape conversion into cropland and plantations. In contrast, in semiarid central Kenya, biomass burning peaked at intermediate moisture‐balance levels, whereas it was lower both during the wettest and driest multidecadal periods of the last 1200 years. Here, burning steadily increased since the mid20th century, presumably due to more frequent deliberate ignitions for bush clearing and cattle ranching. Both the observed historical trends and regional contrasts in biomass burning are consistent with spatial variability in fire regimes across the African savanna biome today. They demonstrate the strong dependence of East African fire regimes on both climatic moisture balance and vegetation, and the extent to which this dependence is now being overridden by anthropogenic activity.  相似文献   
125.
In areas of the North Pacific that are largely free of overfishing, climate regime shifts – abrupt changes in modes of low‐frequency climate variability – are seen as the dominant drivers of decadal‐scale ecological variability. We assessed the ability of leading modes of climate variability [Pacific Decadal Oscillation (PDO), North Pacific Gyre Oscillation (NPGO), Arctic Oscillation (AO), Pacific‐North American Pattern (PNA), North Pacific Index (NPI), El Niño‐Southern Oscillation (ENSO)] to explain decadal‐scale (1965–2008) patterns of climatic and biological variability across two North Pacific ecosystems (Gulf of Alaska and Bering Sea). Our response variables were the first principle component (PC1) of four regional climate parameters [sea surface temperature (SST), sea level pressure (SLP), freshwater input, ice cover], and PCs 1–2 of 36 biological time series [production or abundance for populations of salmon (Oncorhynchus spp.), groundfish, herring (Clupea pallasii), shrimp, and jellyfish]. We found that the climate modes alone could not explain ecological variability in the study region. Both linear models (for climate PC1) and generalized additive models (for biology PC1–2) invoking only the climate modes produced residuals with significant temporal trends, indicating that the models failed to capture coherent patterns of ecological variability. However, when the residual climate trend and a time series of commercial fishery catches were used as additional candidate variables, resulting models of biology PC1–2 satisfied assumptions of independent residuals and out‐performed models constructed from the climate modes alone in terms of predictive power. As measured by effect size and Akaike weights, the residual climate trend was the most important variable for explaining biology PC1 variability, and commercial catch the most important variable for biology PC2. Patterns of climate sensitivity and exploitation history for taxa strongly associated with biology PC1–2 suggest plausible mechanistic explanations for these modeling results. Our findings suggest that, even in the absence of overfishing and in areas strongly influenced by internal climate variability, climate regime shift effects can only be understood in the context of other ecosystem perturbations.  相似文献   
126.
Tooth microwear feature densities were significantly increased in a population of laboratory‐reared three‐spined stickleback Gasterosteus aculeatus in four days, after they were transferred from a limnetic feeding regime to a benthic feeding regime. These results show that even in aquatic vertebrates with non‐occluding teeth, changes in feeding can cause changes in tooth microwear in just a few days, as in mammals.  相似文献   
127.
The temporal and spatial distribution of fires for an area in east-central Senegal was determined on the basis of multi-temporal NOAA AVHRR satellite images. Three years of data (1990–1992) were analyzed defining the boundary between two different fire regimes: very few and scattered fires to the north with the majority of fires south of the boundary. This boundary was stable for the three dry seasons examined and was identical to the northernmost extension of fires as determined by visual inspection of a hard copy Landsat image mosaic. Fire frequencies were analyzed in relation to dominant vegetation types and yearly precipitation, and the findings compared to results of a field survey of the local population's perceptions of the causes and implications of fires. Survey results clearly showed that the use of fire in the study area is closely linked to the utilization of the environment for livestock grazing and crop production. We conclude that the local population has a high degree of awareness about the application of fire, that different fire use practices concerning can be identified respectively in the grasslands of the northern and the savanna of the southern parts of the study area, and that these practices reflect a well adapted production strategy. Finally, we recommend policy decisions be more flexible in the light of local understanding of fire use.  相似文献   
128.
王永健  陶建平  张炜银  臧润国  丁易  李媛  王微 《生态学报》2006,26(11):3525-3532
通过样带调查和TWINSPAN、DCCA分析,从植物种、植物群落及其多样性与环境关系方面,研究了岷江上游土地岭大熊猫走廊带恢复植被的干扰状况。结果表明:应用TWINSPAN分类,并结合优势种组成、干扰状况分析及DCCA排序,可将植被划分为6个群落类型,同时划分出响应型、迟钝型、中度干扰忍耐型和重度干扰忍耐型4类干扰响应的植物类型。以样方物种和以样方多样性指数的DCCA分析结果基本一致,物种及群落的空间分布呈明显的聚集格局,反映其与环境因子间的密切关系。DCCA排序图上,海拔差、坡形、与公路距离、坡度及道路条数对群落和物种分布有明显的影响,与干扰相关性最大的坡度、样地道路数目、与公路间的距离3个因子反映了植被的干扰梯度。干扰对土地岭恢复植被影响显著,干扰降低了群落的物种多样性,同时阻碍了演替进程。  相似文献   
129.
沉积物记录揭示的深圳湾红树林生态系统稳态转变   总被引:1,自引:0,他引:1  
稳态转换作为滨海生态系统的一种灾变现象,其过程伴随着生态系统质量下降和功能退化。深圳湾位于粤港澳大湾区的核心区域,深入理解其生态系统演化过程是进行适应性管理的重要前提。2014年于深圳湾福田红树林湿地获得4根岩芯沉积柱,通过分析沉积和生物地球化学指标(包括金属元素、营养盐、粒度和有机质指标),重建半个世纪以来深圳湾环境的历史变迁,揭示其生态系统发生的稳态转变过程。结果表明:稳态转换发生前(1954-1980),福田红树林沉积物中重金属、无机营养和有机物含量稳定增加,但处于较低水平;稳态转换发生后(1990-2014),深圳湾中污染输入增加,沉积物中重金属和营养盐含量发生明显变化,深圳湾生态系统质量持续下降。通过揭示深圳湾生态系统演变过程及其稳态转变的发生规律,为粤港澳大湾区生态系统修复和管理提供重要的理论依据和参考。  相似文献   
130.
三种园林植物对夜间光照的响应与适应特征   总被引:2,自引:0,他引:2  
光污染是城市生态系统中重要的污染类型,目前的研究集中在光污染对人类健康、昆虫生活史、生活习性、活动规律等方面,对植物生理生态的效应研究则较少。以凤仙花(Impatiens balsamina)、小叶栀子(Gardenia jasminoides)、夏菊(Dendranthema morifolium)为研究对象,研究白光LED灯从每天18:00—24:00照光(T1处理)、每天18:00—次日8:00照光(T2处理)以及自然光周期(CK)等3种光环境条件下,3种植物生物量积累与分配、开花特征、色素含量、碳氮含量及其比值(C/N比)、抗氧化酶等方面的响应与适应特征。结果表明,T1和T2处理增加了凤仙花的生物量(分别为CK的1.4和1.9倍),降低了叶片和茎的N含量,增加了叶片的C/N比(分别为CK的1.2和1.9倍),降低了叶片的色素含量;T1处理延迟了凤仙花的花期,T2处理条件下凤仙花不开花。T1和T2处理虽然没有影响小叶栀子的花期,但增加了花的数量,减小了花的平均重量,花的C/N比显著增加(T2处理为CK的1.3倍);T2处理降低了小叶栀子叶片的叶绿素a、b及总叶绿素含量,增加了丙二醛的含量(T2处理为CK的1.7倍)。夏菊的生物量及生理特征受到T1和T2处理的影响最小,但T1和T2处理均抑制了夏菊开花。这些结果表明凤仙花和夏菊开花对光污染引起光周期的变化比较敏感,凤仙花的生长和养分特征也受到夜间光照的显著影响,光污染对小叶栀子的叶片造成了显著伤害。总的来讲,与T2相比,T1处理对3种植物的负面影响较小,在城市照明的管理过程中,可以根据需要缩短夜间光照的时间,既可以节约能源,又可以减小对植物生理生态的负面影响。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号