首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1472篇
  免费   82篇
  国内免费   40篇
  2024年   2篇
  2023年   29篇
  2022年   24篇
  2021年   36篇
  2020年   35篇
  2019年   47篇
  2018年   48篇
  2017年   57篇
  2016年   40篇
  2015年   44篇
  2014年   121篇
  2013年   248篇
  2012年   88篇
  2011年   61篇
  2010年   34篇
  2009年   53篇
  2008年   59篇
  2007年   78篇
  2006年   74篇
  2005年   63篇
  2004年   53篇
  2003年   39篇
  2002年   29篇
  2001年   27篇
  2000年   23篇
  1999年   13篇
  1998年   19篇
  1997年   18篇
  1996年   13篇
  1995年   14篇
  1994年   8篇
  1993年   10篇
  1992年   9篇
  1991年   11篇
  1990年   4篇
  1989年   9篇
  1988年   5篇
  1987年   8篇
  1986年   10篇
  1985年   4篇
  1983年   3篇
  1982年   2篇
  1981年   4篇
  1980年   4篇
  1979年   6篇
  1978年   2篇
  1975年   1篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
排序方式: 共有1594条查询结果,搜索用时 31 毫秒
101.
We genotyped 19 neurofibromatosis type 1 (NF1) families from French Canadians of the Quebec population with four intragenic microsatellites (IVS26-2.3, IVS27AC28.4, IVS27AC33.1, and IVS38GT53.0). Linkage analysis of the four microsatellite markers among the 19 NF1 families indicates that the four microsatellites are strongly linked with NF1 disease (LOD = 2.76-3.64). The four markers are associated (P = 0-0.077) except marker pair IVS26-2.3/IVS27AC33.1 (P = 0.18 or 0.17). However, perhaps due to the high mutation rate of the NF1 gene, no founder effect for NF1 was detected in the Quebec French Canadians.  相似文献   
102.
Protein-RNA recognition is an essential foundation of cellular processes, yet much remains unknown about these important interactions. The recognition between aminoacyl-tRNA synthetases and their cognate tRNA substrates is highly specific and essential for cell viability, due to the necessity for accurate translation of the genetic code into protein sequences. We selected an active tRNA that is highly mutated in the recognition nucleotides of the acceptor stem region in the alanine system. The functional properties of this mutant and its secondary derivatives demonstrate that recognition cannot be reduced to isolated structural elements, but rather the amino acid acceptor stem is being recognized as a unit.  相似文献   
103.
Recent data from humans and other species provide convincing evidence of variation in recombination rate in different genomic regions. Comparison of physical and genetic maps reveals variation on a scale of megabases, with substantial differences between sexes. Recombination is often suppressed near centromeres and elevated near telomeres, but neither of these observations is true for all chromosomes. In humans, patterns of linkage disequilibrium and experimental measures of recombination from sperm-typing reveal dramatic hotspots of recombination on a scale of kilobases. Genome-wide variation in the amount of crossing-over may be due to variation in the density of hotspots, the intensity of hotspots, or both. Theoretical models of selection and linkage predict that genetic variation will be reduced in regions of low recombination, and this prediction is supported by data from several species. Heterogeneity in rates of crossing-over provides both an opportunity and a challenge for identifying disease genes: as associations occur in blocks, genomic regions containing disease loci may be identified with relatively few markers, yet identifying the causal mutations is unlikely to be achieved through associations alone.  相似文献   
104.
At present there is tremendous interest in characterizing the magnitude and distribution of linkage disequilibrium (LD) throughout the human genome, which will provide the necessary foundation for genome-wide LD analyses and facilitate detailed evolutionary studies. To this end, a human high-density single-nucleotide polymorphism (SNP) marker map has been constructed. Many of the SNPs on this map, however, were identified by sampling a small number of chromosomes from a single population, and inferences drawn from studies using such SNPs may be influenced by ascertainment bias (AB). Through extensive simulations, we have found that AB is a potentially significant problem in estimating and comparing LD within and between populations. Specifically, the magnitude of AB is a function of the SNP discovery strategy, number of chromosomes used for SNP discovery, population genetic characteristics of the particular genomic region considered, amount of gene flow between populations, and demographic history of the populations. We demonstrate that a balanced SNP discovery strategy (where equal numbers of chromosomes are sampled from multiple subpopulations) is the optimal study design for generating broadly applicable SNP resources. Finally, we validate our theoretical predictions by comparing our results to publicly available data from ten genes sequenced in 24 African American and 23 European American individuals.  相似文献   
105.
In order to examine how molecular polymorphism in barley landraces, sampled from five different ecogeographical regions of Syria and Jordan, is organised and partitioned, genetic variability at 21 nuclear and 10 chloroplast microsatellite loci were examined. Chloroplast polymorphism was detected, with most variation being ascribed to differences between the five regions (Fst 0.45) and to within sites within each region (Fst 0.44). Moreover, the distribution of chloroplast polymorphism is structured and not distributed randomly across the barley landraces sampled. From a total of 125 landrace accessions (five lines from each of five sites from each of five regions) genotyped with 21 SSRs a total of 244 alleles were detected, of which 38 were common to the five regions sampled. Most nuclear variation was detected within sites. Significant differentiation between sites (Fst 0.29) was detected with nuclear SSRs and this partially mirrored polymorphism in the chloroplast genome. Strong statistical associations/interaction was also detected between the chloroplast and nuclear SSRs, together with non-random association (linkage disequilibrium) of alleles at both linked and unlinked SSR loci. These results are discussed in the context of adaptation of landraces to the extreme environment, the concept of 'adapted gene complexes' and the exploitation of landraces in breeding programmes.Communicated by P. Langridge  相似文献   
106.
Sharon D  Gilad Y  Glusman G  Khen M  Lancet D  Kalush F 《Gene》2000,260(1-2):87-94
Single-nucleotide polymorphisms (SNPs) were studied in 15 olfactory receptor (OR) coding regions, one control region and two noncoding sequences all residing within a 412 kb OR gene cluster on human chromosome 17p13.3, as well as in other G-protein coupled receptors (GPCRs). A total of 26 SNPs were identified in ORs, 21 of which are coding SNPs (cSNPs). The mean nucleotide diversity of OR coding regions was 0.078% (ranging from 0 to 0.16%), which is about twice higher than that of other GPCRs, and similar to the nucleotide diversity levels of noncoding regions along the human genome. The high polymorphism level in the OR coding regions might be due to a weak positive selection pressure acting on the OR genes. In two cases, OR genes have been found to share the same cSNP. This could be explained by recent gene conversion events, which might be a part of a concerted evolution mechanism acting on the OR superfamily. Using the genotype data of 85 unrelated individuals in 15 SNPs, we found linkage disequilibrium (LD) between pairs of SNPs located on the centromeric part of the cluster. On the other hand, no LD was found between SNPs located on the telomeric part of the cluster, suggesting the presence of several hot-spots for recombination within this cluster. Thus, different regions of this gene cluster may have been subject to different recombination rates.  相似文献   
107.
Nonadditive genetic variation and genetic disequilibrium are two important factors that influence the evolutionary trajectory of natural populations. We assayed quantitative genetic variation in a temporary-pond-dwelling population of Daphnia pulex over a full season to examine the role of nonadditive genetic variation and genetic disequilibrium in determining the short-term evolutionary trajectory of a cyclic parthenogen. Quantitative traits were influenced by three factors: (1) clonal selection significantly changed the population mean phenotype during the course of the growing season; (2) sexual reproduction and recombination led to significant changes in life-history trait means and the levels of expressed genetic variation, implying the presence of substantial nonadditive genetic variation and genetic disequilibrium; and (3) Egg-bank effects were found to be an important component of the realized year-to-year change. Additionally, we examined the impact of genetic disequilibria induced by clonal selection on the genetic (co)variance structure with a common principal components model. Clonal selection caused significant changes in the (co)variance structure that were eliminated by a single bout of random mating, suggesting that a build-up of disequilibria was the primary source of changes in the (co)variance structure. The results of this study highlight the complexity of natural selection operating on populations that undergo alternating phases of sexual and asexual reproduction.  相似文献   
108.
Abstract The D ' coefficient is one of the most commonly used measures of the extent of gametic disequilibrium between multiallelic loci. It has been suggested that the range of the D ' measure of overall disequilibrium between pairs of multiallelic loci depends on allele frequencies, except under some very restricted conditions. Nevertheless, the problem of dependence of the range of D ' has not been characterized under a wide set of possible polymorphisms. Evaluation of the utility of D ' as a measure of the strength of overall disequilibrium between all possible pairs of alleles at two multiallelic loci requires better knowledge of its range than is currently available. In this work, the conditions of polymorphism under which the range of D ' is frequency independent are given. It is found that the range of D ' is more often independent of allelic frequencies than is commonly thought. Furthermore, the range of D ' undergoes only small fluctuations as a function of the polymorphisms at the loci. Numerical cases and microsatellite data from humans are used for illustration. These observations indicate that the D ' coefficient is a useful tool for the estimation and comparison of the extent of overall disequilibrium across pairs of multiallelic loci.  相似文献   
109.
An enzyme analysis of the liver fluke, Clonorchis sinensis from Kimhae, Korea and from Shenyang, China was conducted using a horizontal starch gel electrophoresis in order to elucidate their genetic relationships. A total of eight enzymes was employed from two different kinds of buffer systems. Two loci from each enzyme of aconitase and esterase (alpha-Na and beta-Na); and only one locus each from six enzymes, glucose-6-phosphate dehydrogenase (G6PD), alpha-glycerophosphate dehydrogenase (GPD), 3-hydroxybutyrate dehydrogenase (HBDH), malate dehydrogenase (MDH), phosphoglucose isomerase (PGI), and phosphoglucomutase (PGM) were detected. Most of loci in two populations of C. sinensis showed homozygous monomorphic banding patterns and one of them, GPD was specific as genetic markers between two different populations. However, esterase (alpha-Na), GPD, HBDH and PGI loci showed polymorphic banding patterns. Two populations of C. sinensis were more closely clustered within the range of genetic identity value of 0.998-1.0. In summarizing the above results, two populations of C. sinensis employed in this study showed mostly monomorphic enzyme protein banding patterns, and genetic differences specific between two populations.  相似文献   
110.
Published data on mean rates of genetic divergence for a substantial number of protein molecules is used to examine the hypothetical effect of variations in these rates upon the expected relationship between evolutionary time and Nei's (1972, American Naturalist, 106: 283) genetic distance, D. Results indicate that at higher values D can be expected to deviate significantly from stochastic linearity with time. However, over the sort of time scale over which D values are normally estimated, deviation is slight and likely to be insignificant when compared to other potential sources of error. It is concluded that for most practical purposes interprotein differences in mean rates of amino acid substitution need not be taken into account when calibrating genetic distance estimates against evolutionary time.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号