首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   549篇
  免费   49篇
  国内免费   25篇
  2024年   1篇
  2023年   6篇
  2022年   4篇
  2021年   9篇
  2020年   24篇
  2019年   21篇
  2018年   23篇
  2017年   20篇
  2016年   17篇
  2015年   19篇
  2014年   23篇
  2013年   43篇
  2012年   24篇
  2011年   23篇
  2010年   24篇
  2009年   39篇
  2008年   37篇
  2007年   36篇
  2006年   29篇
  2005年   14篇
  2004年   24篇
  2003年   17篇
  2002年   13篇
  2001年   10篇
  2000年   7篇
  1999年   16篇
  1998年   6篇
  1997年   13篇
  1996年   8篇
  1995年   5篇
  1994年   5篇
  1993年   6篇
  1992年   9篇
  1991年   5篇
  1990年   8篇
  1989年   4篇
  1988年   6篇
  1987年   7篇
  1986年   2篇
  1985年   7篇
  1984年   1篇
  1983年   1篇
  1982年   3篇
  1981年   1篇
  1980年   1篇
  1976年   2篇
排序方式: 共有623条查询结果,搜索用时 15 毫秒
81.

Background

We recently showed that transient warming effects decreased the functional and adhesion properties of mesenchymal stromal cells (MSC) while post-thaw viability remained high. In an attempt to better predict functional impairment of cryopreserved MSC, we further analysed the correlation between viability, immunosuppressive activity and adhesion of cells exposed or not to warming events.

Methods

MSC prepared from six umbilical cords were frozen to ?130°C and immediately transferred in a dry ice container or exposed to room temperature for 2 to 10 min (warming events) prior to storage in liquid nitrogen. Viability, functionality (inhibition of T-cell proliferation), adhesion and expression of various integrins were evaluated.

Results

The monotonic loss of functional activity with time was proportional to the length of warming events to which MSC were subjected and correlated with the monotonic loss of adhesion capacity. In contrast, post-thaw viability assessment did not predict functional impairment. Interestingly, flow cytometry analyses revealed the emergence of a FSClow population present in the viable cell fraction of freshly thawed MSC, which displayed poor adhesion capacity and expressed low levels of integrin β5. The prevalence of this FSClow population increased with the length of warming events and correlated with impaired functional and adhesion properties.

Discussion

Our results reveal that loss of functional activity (4-day test) induced by transient warming events could be predicted by evaluating adhesion (2-hr test) or FSC profile (10-min test) of MSC immediately post-thaw. These observations could lead to the development of surrogate tests for rapidly assessing the functional quality of cryopreserved MSC.  相似文献   
82.
We present the first long‐term, highly resolved prokaryotic cell concentration record obtained from a polar ice core. This record, obtained from the West Antarctic Ice Sheet (WAIS) Divide (WD) ice core, spanned from the Last Glacial Maximum (LGM) to the early Holocene (EH) and showed distinct fluctuations in prokaryotic cell concentration coincident with major climatic states. The time series also revealed a ~1,500‐year periodicity with greater amplitude during the Last Deglaciation (LDG). Higher prokaryotic cell concentration and lower variability occurred during the LGM and EH than during the LDG. A sevenfold decrease in prokaryotic cell concentration coincided with the LGM/LDG transition and the global 19 ka meltwater pulse. Statistical models revealed significant relationships between the prokaryotic cell record and tracers of both marine (sea‐salt sodium [ssNa]) and burning emissions (black carbon [BC]). Collectively, these models, together with visual observations and methanosulfidic acid (MSA) measurements, indicated that the temporal variability in concentration of airborne prokaryotic cells reflected changes in marine/sea‐ice regional environments of the WAIS. Our data revealed that variations in source and transport were the most likely processes producing the significant temporal variations in WD prokaryotic cell concentrations. This record provided strong evidence that airborne prokaryotic cell deposition differed during the LGM, LDG, and EH, and that these changes in cell densities could be explained by different environmental conditions during each of these climatic periods. Our observations provide the first ice‐core time series evidence for a prokaryotic response to long‐term climatic and environmental processes.  相似文献   
83.
Organic matter produced by the sea ice microbial community (SIMCo) is an important link between sea ice dynamics and secondary production in near‐shore food webs of Antarctica. Sea ice conditions in McMurdo Sound were quantified from time series of MODIS satellite images for Sept. 1 through Feb. 28 of 2007–2015. A predictable sea ice persistence gradient along the length of the Sound and evidence for a distinct change in sea ice dynamics in 2011 were observed. We used stable isotope analysis (δ13C and δ15N) of SIMCo, suspended particulate organic matter (SPOM) and shallow water (10–20 m) macroinvertebrates to reveal patterns in trophic structure of, and incorporation of organic matter from SIMCo into, benthic communities at eight sites distributed along the sea ice persistence gradient. Mass‐balance analysis revealed distinct trophic architecture among communities and large fluxes of SIMCo into the near‐shore food web, with the estimates ranging from 2 to 84% of organic matter derived from SIMCo for individual species. Analysis of patterns in density, and biomass of macroinvertebrate communities among sites allowed us to model net incorporation of organic matter from SIMCo, in terms of biomass per unit area (g/m2), into benthic communities. Here, organic matter derived from SIMCo supported 39 to 71 per cent of total biomass. Furthermore, for six species, we observed declines in contribution of SIMCo between years with persistent sea ice (2008–2009) and years with extensive sea ice breakout (2012–2015). Our data demonstrate the vital role of SIMCo in ecosystem function in Antarctica and strong linkages between sea ice dynamics and near‐shore secondary productivity. These results have important implications for our understanding of how benthic communities will respond to changes in sea ice dynamics associated with climate change and highlight the important role of shallow water macroinvertebrate communities as sentinels of change for the Antarctic marine ecosystem.  相似文献   
84.
Polarella glacialis (Montresor et al.) was identified in Davis Station sea ice by morphological and DNA sequence comparison of cultures with those of the authentic strain P. glacialis CCMP 1383 isolated from McMurdo Sound. Cells and cysts of the Davis isolate (FL1B) were morphologically indistinguishable from P. glacialis, and comparison of the large subunit rDNA of both cultures demonstrated only 0.2% sequence divergence over 1366 base pairs. The photosynthetic pigments of P. glacialis (strains FL1B and CCMP 1383) were typical of dinoflagellates, with peridinin (contributing up to 31%) as the major accessory pigment. Extremely high levels of polyunsaturated fatty acids (PUFA, up to 76.3%) were characteristic of P. glacialis isolate FL1B. The high PUFA concentration of this species is thought to be an adaptation to survive the cold temperatures of the upper fast ice. The sterol profile of FL1B was atypical of dinoflagellates, with 4‐desmethylsterols (up to 79%) in greater abundance than 4α‐methyl sterols (up to 24%). 27‐Nor‐24‐methylcholest‐5,22E‐dien‐3β‐ol was identified as the principle sterol in P. glacialis, contributing up to 64% of the total sterol composition.  相似文献   
85.
The measurement of Photosynthetic rates of algae growing on the undersurface of 1. 7 m thick ice in the Canadian Arctic (Resolute Passage. N.W.T.) presents several problems. During the preparation of samples for physiological measurements, the ice algae may he exposed to salinity and temperature shocks. Fluorescence induction (the rise in in vivo Chl a fluorescence intensity during a period of millineconds) and photosynthesis-irradiance (PI) experiments examined the potential effects of salinity and temperature on the physiology of ice algae. Experimental suspensions were routinely prepared by scraping one part ire crystals (11–14%0 salinity) and attached algae from the bottom ice into four parts filtered seawater (32%0 salinity). giving a final salinity of 28–31%0. Post-dilution of melted ice scrapings with seawater suppressed photosynthetic 14C-fixation and decreased ADCMU (the area above the fluorescence induction curve measured in the presence of the inhibitor DCMC: an estimate of photosynthetic capacity) by a factor of 3–16. due to the low salinity of the melted ice scrapings. Fluorescence induction and PI experiments showed that the ice algae had a salinity optimum near 30%0, close to the ambient seawater salinity, Experiments in which the Chl a concentration was manipulated showed that ADCMU, Pam (Chl a-normalized rate of photosynthesis at light saturation), and a (photosynthetic efficiency) declined with increasing Chl a concentration. Ice algae tolerated heating (l.5°C-min-1) up to 17° C, above which ADCMU’decreased with sample temperature.  相似文献   
86.
Aim This study uses a high‐resolution simulation of the Last Glacial Maximum (LGM) climate to assess: (1) whether LGM climate still affects the geographical species richness patterns in the European tree flora and (2) the relative importance of modern and LGM climate as controls of tree species richness in Europe. Location The parts of Europe that were unglaciated during the LGM. Methods Atlas data on the distributions of 55 tree species were linked with data on modern and LGM climate and climatic heterogeneity in a geographical information system with a 60‐km grid. Four measures of species richness were computed: total richness, and richness of the 18 most restricted species, 19 species of medium incidence (intermediate species) and 18 most widespread species. We used ordinary least‐squares regression and spatial autoregressive modelling to test and estimate the richness–climate relationships. Results LGM climate constituted the best single set of explanatory variables for richness of restricted species, while modern climate and climatic heterogeneity was best for total and widespread species richness and richness of intermediate species, respectively. The autoregressive model with all climatic predictors was supported for all richness measures using an information‐theoretic approach, albeit only weakly so for total species richness. Among the strongest relationships were increases in total and intermediate richness with climatic heterogeneity and in restricted richness with LGM growing‐degree‐days. Partial regression showed that climatic heterogeneity accounted for the largest unique variation fraction for intermediate richness, while LGM climate was particularly important for restricted richness. Main conclusions LGM climate appears to still affect geographical patterns of tree species richness in Europe, albeit the relative importance of modern and LGM climate depends on range size. Notably, LGM climate is a strong richness control for species with a restricted range, which appear to still be associated with their glacial refugia.  相似文献   
87.
88.
In Greenland, free‐living red coralline algae contribute to and dominate marine habitats along the coastline. Lithothamnion glaciale dominates coralline algae beds in many regions of the Arctic, but never in Godthåbsfjord, Greenland, where Clathromorphum sp. is dominant. To investigate environmental impacts on coralline algae distribution, calcification and primary productivity were measured in situ during summers of 2015 and 2016, and annual patterns of productivity in L. glaciale were monitored in laboratory‐based mesocosm experiments where temperature and salinity were manipulated to mimic high glacial melt. The results of field and cold‐room measurements indicate that both L. glaciale and Clathromorphum sp. had low calcification and photosynthetic rates during the Greenland summer (2015 and 2016), with maximum of 1.225 ± 0.17 or 0.002 ± 0.023 μmol CaCO 3 · g?1 · h?1 and ?0.007 ±0.003 or ?0.004 ± 0.001 mg O2 · L?1 · h?1 in each species respectively. Mesocosm experiments indicate L. glaciale is a seasonal responder; photosynthetic and calcification rates increase with annual light cycles. Furthermore, metabolic processes in L. glaciale were negatively influenced by low salinity; positive growth rates only occurred in marine treatments where individuals accumulated an average of 1.85 ± 1.73 mg · d?1 of biomass through summer. These results indicate high freshwater input to the Godthåbsfjord region may drive the low abundance of L glaciale , and could decrease species distribution as climate change increases freshwater input to the Arctic marine system via enhanced ice sheet runoff and glacier calving.  相似文献   
89.
细菌冰核提高印度谷螟过冷却点的研究   总被引:4,自引:0,他引:4  
印度谷螟(Plodia interpunctella)是一种不耐结冰的昆虫,在冬季它通过降低过冷却 点以避免结冰。现已查明,冰核活性细菌能显著提高植物的过冷却点,导致许多作物在较高 的温度下发生霜冻害。本文也证明细菌冰核能显著提高印度谷螟虫的过冷却点。对照的平均过冷却点是-17.6℃;分别用0.1g和1g细菌冰核与1kg面粉混合后进行处理,平均过冷却点分别比对照提高了12.8℃和13.6℃。研究结果支持这样的观点:细菌冰核有可能成为一种在冬季使用的、杀灭不耐结冰害虫的生物制剂。  相似文献   
90.
以江西九连山国家自然保护区常绿阔叶林为对象,研究林分不同层次优势种受灾程度,分析物种海拔、坡度对受灾程度的影响。结果表明:乔木上层和中层树木以断稍为主,乔木下层树木以断稍和腰折为主,小树和幼树以压弯为主。在平均受损指数MDI(Mean Damage Index)方面,乔木上层米槠MDI值最高,拟赤杨最低; 乔木中层鸭公树MDI值最高,浙江新木姜子最低; 乔木下层米槠MDI值最高,浙江新木姜子最低; 小树米槠MDI值最高,细枝柃最低; 幼树二列叶柃MDI值最高,狗骨柴最低。海拔对不同林分层次树木的部分受损指标有显著影响(P<0.05); 整体上,不同林分层次树木的受损指标在700~760 m海拔生境高于640~700 m海拔生境。不同坡度生境下树木的受损指标均无显著差异(P>0.05)。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号