首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   620篇
  免费   44篇
  国内免费   32篇
  2023年   11篇
  2022年   8篇
  2021年   30篇
  2020年   27篇
  2019年   52篇
  2018年   24篇
  2017年   20篇
  2016年   16篇
  2015年   34篇
  2014年   45篇
  2013年   55篇
  2012年   48篇
  2011年   60篇
  2010年   44篇
  2009年   32篇
  2008年   32篇
  2007年   18篇
  2006年   18篇
  2005年   16篇
  2004年   9篇
  2003年   16篇
  2002年   16篇
  2001年   7篇
  2000年   8篇
  1999年   5篇
  1998年   5篇
  1997年   8篇
  1996年   15篇
  1995年   5篇
  1994年   1篇
  1993年   1篇
  1992年   2篇
  1991年   1篇
  1990年   2篇
  1989年   4篇
  1987年   1篇
排序方式: 共有696条查询结果,搜索用时 15 毫秒
81.
Low reprogramming efficiency and reduced pluripotency have been the two major obstacles in induced pluripotent stem (iPS) cell research. An effective and quick method to assess the pluripotency levels of iPS cells at early stages would significantly increase the success rate of iPS cell generation and promote its applications. We have identified a conserved imprinted region of the mouse genome, the Dlk1-Dio3 region, which was activated in fully pluripotent mouse stem cells but repressed in partially pluripotent cells. The degree of activation of this region was positively correlated with the pluripotency levels of stem cells. A mammalian conserved cluster of microRNAs encoded by this region exhibited significant expression differences between full and partial pluripotent stem cells. Several microRNAs from this cluster potentially target components of the polycomb repressive complex 2 (PRC2) and may form a feedback regulatory loop resulting in the expression of all genes and non-coding RNAs encoded by this region in full pluripotent stem cells. No other genomic regions were found to exhibit such clear expression changes between cell lines with different pluripotency levels; therefore, the Dlk1-Dio3 region may serve as a marker to identify fully pluripotent iPS or embryonic stem cells from partial pluripotent cells. These findings also provide a step forward toward understanding the operating mechanisms during reprogramming to produce iPS cells and can potentially promote the application of iPS cells in regenerative medicine and cancer therapy.  相似文献   
82.
Expression of membrane-bound carbonic anhydrases (CAs) of CA IV, CA IX, CA XII, and CA XIV has been investigated in the mouse heart. Western blots using microsomal membranes of wild-type hearts demonstrate a 39-, 43-, and 54-kDa band representing CA IV, CA IX, and CA XIV, respectively, but CA XII could not be detected. Expression of CA IX in the CA IV/CA XIV knockout animals was further confirmed using matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Cardiac cells were immunostained using anti-CA/FITC and anti-alpha-actinin/TRITC, as well as anti-CA/FITC and anti-SERCA2/TRITC. Subcellular CA localization was investigated by confocal laser scanning microscopy. CA localization in the sarcolemmal (SL) membrane was examined by double immunostaining using anti-CA/FITC and anti-MCT-1/TRITC. CAs showed a distinct distribution pattern in the sarcoplasmic reticulum (SR) membrane. CA XIV is predominantly localized in the longitudinal SR, whereas CA IX is mainly expressed in the terminal SR/t-tubular region. CA IV is present in both SR regions, whereas CA XII is not found in the SR. In the SL membrane, only CA IV and CA XIV are present. We conclude that CA IV and CA XIV are associated with the SR as well as with the SL membrane, CA IX is located in the terminal SR/t-tubular region, and CA XII is not present in the mouse heart. Therefore, the unique subcellular localization of CA IX and CA XIV in cardiac myocytes suggests different functions of both enzymes in excitation-contraction coupling.  相似文献   
83.
Heart muscle ischemia-reperfusion provokes a pronounced cardiomyocyte oxidative stress. In the present study, we examined a possible protective effect of the cardioprotective drug, 2,3-butanedione monoxime (BDM), on the cultured neonatal cardiac myocytes exposed to oxidative stress induced by hypochlorous acid (HOCl), that may be formed by activated polymorphonuclear neutrophils in myocardium ischemic-reperfusion areas, and a useful model oxidant, tert-butyl hydroperoxide (tBHP). Using isolated rat cardiomyocytes substantial cytotoxicity of HOCl and tBHP was demonstrated: The concentrations of HOCl and tBHP causing a 50% decrease of cardiomyocyte cell viability were estimated to be 55 +/- 5 microM and 36 +/- 6 microM, respectively. The cell viability measured immediately after the tBHP oxidative treatment was significantly higher than that measured after 22 h of cell post-incubation in a fresh culture medium. This showed delayed cell death after removing tBHP. Hypochlorous acid treatment of cardiomyocytes did not change cellular viability during the cellular post-incubation in a fresh medium. Even a long-term (22 h) incubation of oxidatively damaged cardiomyocytes with BDM (5 mM) added after the HOCl removal did not recover the viability of the HOCl-exposed cells. In the presence of BDM, the cytotoxicity of HOCl significantly increased probably due to a direct reaction of both compounds and toxic chlorinated derivative formation. 2,3-Butanedione monoxime (5 mM) did not reduce cytotoxicity of tBHP, either. Such well-known antioxidative agents as melatonin or glutathione considerably prevented oxidant-induced cell death in a concentration-dependent manner.  相似文献   
84.
An experimental model of mouse embryonic stem cell (ESC) differentiation into cells with contractile activity (similar to that of cardiomyocytes) without embryoid body formation has been obtained. The main factor inducing ESC differentiation along the cardiomyocyte pathway is recombinant cytokine LIF added in the course of long-term culturing. The contractile cells respond positively to treatment with isoproterenol, a cardioactive drug, which is evidence for the presence in these cells of β-adrenoreceptors characteristic of terminally differentiated mammalian cardiomyocytes.  相似文献   
85.
We tested the hypothesis that granulocyte colony-stimulating factor (G-CSF) administration would enhance the efficacy of cellular cardiomyoplasty with embryonic stem (ES) cell-derived cardiomyocytes in infarcted myocardium. Three weeks after myocardial infarction by cryoinjury, Sprague-Dawley rats were randomized to receive either an injection of medium, ES cell-derived cardiomyocyte transplantation, G-CSF administration, or a combination of G-CSF administration and ES cell-derived cardiomyocyte transplantation. Eight weeks after treatment, the cardiac tissue formation, neovascularization, and apoptotic activity in the infarct regions were evaluated by histology and immunohistochemistry. The left ventricular (LV) dimensions and function of the treated heart were evaluated by echocardiography. Transplanted ES cell-derived cardiomyocytes survived and participated in the myocardial regeneration in the infarcted heart. A combination of G-CSF treatment and ES cell-derived cardiomyocyte transplantation significantly promoted angiogenesis and reduced the infarct area and cell apoptosis in the infarcted myocardium compared with ES cell-derived cardiomyocyte transplantation alone. The combination therapy also attenuated LV dilation, as compared with ES cell-derived cardiomyocyte transplantation alone. G-CSF treatment can enhance the efficacy of cellular cardiomyoplasty by ES cell-derived cardiomyocyte transplantation to treat myocardial infarction.  相似文献   
86.
Recently, induced pluripotent stem cells (iPS cells) have been derived from various techniques and show great potential for therapy of human diseases. Furthermore, the iPS technique can be used to provide cell models to explore pathological mechanisms of many human diseases in vitro, such as Duchenne muscular dystrophy (DMD), which is a severe recessive X-linked form of muscular dystrophy without effective treatment. In this study, we try to determine whether there are different characteristics of myocytes from mdx iPS cells and C57BL/10 iPS cells. Our results showed that both of mdx and C57BL/10 cells could be induced into iPS cells in vitro, whereas colony-forming ability of mdx iPS cells was much weaker than that of C57BL/10 iPS cells. Meanwhile, mdx iPS cells could be induced to differentiate into myocytes, whereas their differentiation efficiency was much lower than that of C57BL/10 iPS cells. And, the number of apoptotic cells in differentiated myocytes from mdx iPS cells was significantly higher than that from C57BL/10 iPS cells. More importantly, treatment of a pan-caspase inhibitor (Z-VAD) produced a significant decrease in apoptotic cells. This study might add some insight to the biology study of dystrophin gene.  相似文献   
87.
Recent studies from our laboratory have showed that resveratrol, a polyphenol found predominantly in grapes rendered strong cardioprotection in animal models of heart disease. The cardioprotection which was observed was primarily associated with the ability of resveratrol to reduce oxidative stress in these models. The aim of the current study was to corroborate the role of resveratrol as an inhibitor of oxidative stress and explore the underlying mechanisms of its action in heart disease. For this purpose, we used a cell model of oxidative stress, the hydrogen peroxide (H2O2) exposed adult rat cardiomyocytes, which was treated with and without resveratrol (30 μM); cardiomyocytes which were not exposed to resveratrol served as controls. Cell injury, cell death and oxidative stress measurements as well as the activities of the major endogenous antioxidants superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) were carried out in control and H2O2 exposed cardiomyocytes, treated with and without resveratrol. Pharmacological blockade using specific blockers of the antioxidant enzymes were used to confirm their role in mediating resveratrol action in H2O2 exposed cardiomyocytes. The status of H2O2 and antioxidant enzymes in serum samples from spontaneously hypertensive rats (SHR) treated with and without resveratrol (2.5 mg/kg body weight) was also examined.Our results showed significant cell injury and death in H2O2 exposed cardiomyocytes which was prevented upon resveratrol treatment. SOD and CAT activities were decreased in H2O2 exposed adult rat cardiomyocytes; treatment with resveratrol significantly prevented this reduction. However, GPx activity was not altered in the H2O2 exposed cardiomyocytes in comparison to controls. Pharmacological blockade of SOD and/or CAT prevented the beneficial effect of resveratrol. In SHR, H2O2 levels were increased, but CAT activity was decreased, while SOD remained unchanged, when compared to WKY rats; resveratrol treatment significantly prevented the increase in H2O2 levels and the decrease in CAT activities in SHR.Based on our results, we conclude that treatment with resveratrol prevents oxidative stress induced cardiomyocyte injury mainly by preserving the activities of critical antioxidant enzymes. This may be a crucial mechanism by which resveratrol confers cardioprotection.  相似文献   
88.
Oxidative stress contributes to tissue injury and cell death during the development of various diseases. The present study aims at investigating whether oxidative stress triggered by the exposure to hydrogen peroxide (H2O2) can induce apoptosis of induced pluripotent stem cells (iPS cells) in a mechanism mediated by insulin-like growth factor (IGF-1) and microRNA-1 (miR-1). iPS cells treated with H2O2 showed increases in miR-1 expression, mitochondria dysfunction, cytochrome-c release and apoptosis, Addition of IGF-1 into the iPS cell cultures reduced the H2O2 cytotoxicity. Prediction algorithms showed that 3′-untranslated regions of IGF-1 gene as a target of miR-1. Moreover, miR-1 mimic, but not miR-1 mimic negative control, diminished the protective effect of IGF-1 on H2O2-induced mitochondrial dysfunction, cytochrome-c release and apoptosis in iPS cells. In conclusion, IGF-1 inhibits H2O2-induced mitochondrial dysfunction, cytochrome-c release and apoptosis. IGF-1′s effect is, at least partially, regulated by miR-1 in iPS cells.  相似文献   
89.
Pluripotent stem cell‐derived cardiomyocytes (PSC‐CMs) are a potentially unlimited source of cardiomyocytes (CMs) for cardiac transplantation therapies. The establishment of pure PSC‐CM populations is important for this application, but is hampered by a lack of CM‐specific surface markers suitable for their identification and sorting. Contemporary purification techniques are either non‐specific or require genetic modification. We report a second harmonic generation (SHG) signal detectable in PSC‐CMs that is attributable to sarcomeric myosin, dependent on PSC‐CM maturity, and retained while PSC‐CMs are in suspension. Our study demonstrates the feasibility of developing a SHG‐activated flow cytometer for the non‐invasive purification of PSC‐CMs. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
90.
The loss of sight affects approximately 3.4 million people in the United States and is expected to increase in the upcoming years.1 Recently, gene therapy and stem cell transplantations have become key therapeutic tools for treating blindness resulting from retinal degenerative diseases. Several forms of autologous transplantation for age-related macular degeneration (AMD), such as iris pigment epithelial cell transplantation, have generated encouraging results, and human clinical trials have begun for other forms of gene and stem cell therapies.2 These include RPE65 gene replacement therapy in patients with Leber''s congenital amaurosis and an RPE cell transplantation using human embryonic stem (ES) cells in Stargardt''s disease.3-4 Now that there are gene therapy vectors and stem cells available for treating patients with retinal diseases, it is important to verify these potential therapies in animal models before applying them in human studies. The mouse has become an important scientific model for testing the therapeutic efficacy of gene therapy vectors and stem cell transplantation in the eye.5-8 In this video article, we present a technique to inject gene therapy vectors or stem cells into the subretinal space of the mouse eye while minimizing damage to the surrounding tissue.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号