首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   620篇
  免费   44篇
  国内免费   32篇
  2023年   11篇
  2022年   8篇
  2021年   30篇
  2020年   27篇
  2019年   52篇
  2018年   24篇
  2017年   20篇
  2016年   16篇
  2015年   34篇
  2014年   45篇
  2013年   55篇
  2012年   48篇
  2011年   60篇
  2010年   44篇
  2009年   32篇
  2008年   32篇
  2007年   18篇
  2006年   18篇
  2005年   16篇
  2004年   9篇
  2003年   16篇
  2002年   16篇
  2001年   7篇
  2000年   8篇
  1999年   5篇
  1998年   5篇
  1997年   8篇
  1996年   15篇
  1995年   5篇
  1994年   1篇
  1993年   1篇
  1992年   2篇
  1991年   1篇
  1990年   2篇
  1989年   4篇
  1987年   1篇
排序方式: 共有696条查询结果,搜索用时 15 毫秒
101.
Stearoyl‐CoA desaturase 1 (SCD1) plays important roles in organ development, glucose tolerance, insulin sensitivity, and cancer. Here, we examined the role of SCD1 for the differentiation of human induced pluripotent stem (hiPS) cells to liver cells by using drug inhibition and biochemical experiments. hiPS cells cultured in a pro‐hepatic medium were exposed to an SCD1 inhibitor at various stages throughout differentiation. Liver‐specific markers, specifically α‐fetoprotein, albumin and urea in conditioned medium, and hepatocyte nuclear factor 4α (HNF4α) and cytochrome P450 7A1 (CYP7A1) gene expressions and triglyceride in cellular extracts were analyzed at various development stages. Measures of hepatocyte‐specific function and triglyceride accumulation in later stages were strongly inhibited a minimum of −29% (< 0.05) by SCD1 inhibitor in the early stage of hepatic differentiation and effectively reversed (>30%, P < 0.01) by the addition of oleate. The results were also reproducible with human primary mononuclear cells (hPMN). SCD1 inhibitor had no significant effect on liver‐specific markers when it was added in the hepatic maturation stage. However, it strikingly led to higher albumin (1.6‐fold, = 0.03) and urea (1.9‐fold, = 0.02) production, and HNF4α (1.9‐fold, = 0.02) and CYP7A1 (1.3‐fold, = 0.03) expression upon incubation during the lineage‐commitment stage. Hepatic differentiation from cultured hiPS cells is sensitive to SCD1 inhibition and this sensitivity is affected by the stage of cellular differentiation. Notably, findings also indicate that this notion can be extended to hPMN. The requirement for SCD1 activity in functional differentiation of hepatocytes may have relevance for human liver disease and metabolic dysregulation.  相似文献   
102.
We have previously reported that Ahnak-mediated TGFβ signaling leads to down-regulation of c-Myc expression. Here, we show that inhibition of Ahnak can promote generation of induced pluripotent stem cells (iPSC) via up-regulation of endogenous c-Myc. Consistent with the c-Myc inhibitory role of Ahnak, mouse embryonic fibroblasts from Ahnak-deficient mouse (Ahnak−/− MEF) show an increased level of c-Myc expression compared with wild type MEF. Generation of iPSC with just three of the four Yamanaka factors, Oct4, Sox2, and Klf4 (hereafter 3F), was significantly enhanced in Ahnak−/− MEF. Similar results were obtained when Ahnak-specific shRNA was applied to wild type MEF. Of note, expressionof Ahnak was significantly induced during the formation of embryoid bodies from embryonic stem cells, suggesting that Ahnak-mediated c-Myc inhibition is involved in embryoid body formation and the initial differentiation of pluripotent stem cells. The iPSC from 3F-infected Ahnak−/− MEF cells (Ahnak−/−-iPSC-3F) showed expression of all stem cell markers examined and the capability to form three primary germ layers. Moreover, injection of Ahnak−/−-iPSC-3F into athymic nude mice led to development of teratoma containing tissues from all three primary germ layers, indicating that iPSC from Ahnak−/− MEF are bona fide pluripotent stem cells. Taken together, these data provide evidence for a new role for Ahnak in cell fate determination during development and suggest that manipulation of Ahnak and the associated signaling pathway may provide a means to regulate iPSC generation.  相似文献   
103.
104.
105.
Ca2+ homeostasis plays a pivotal role in maintaining cell growth and function. Many heart diseases are related to the abnormalities in Ca2+ mobilization and extrusion. Ca2+-sensitive fluorescent dyes have been used successfully to estimate intracellular free Ca2+ ([Ca2+]i) level and the mechanisms of Ca2+ movements in living cells. This article is focused on the methodology involving the use of Fura-2/AM or free Fura-2 to measure agonist-induced Ca2+ mobilization as well as the mechanisms of changes in [Ca2+]i in cardiomyocytes. Methods involving Fura-2 technique for the measurement of Ca2+ extrusion from the cells and Ca2+ reuptake by sarcoplasmic reticulum (SR) are also described. The prevention of KCl-induced increase in the intracellular Ca2+ is shown by chelating the extracellular Ca2+ with EGTA or by the presence of Ca2+-channel inhibitors such as verapamil and diltiazem. The involvement of SR in the ATP-induced increase in intracellular Ca2+ is illustrated by the use of Ca2+-pump inhibitors, thapsigargin and cyclopiazonic acid as well as ryanodine which deplete the SR Ca2+ storage. The use of 2-nitro-4-carboxyphenyl N,N-diphenyl carbamate (NCDC), an inhibitor of inositol 1,4,5-trisphosphate (IP3) production, is described for the attenuation of phosphatidic acid (PA) induced increase in Ca2+-mobilization. The increase in intracellular Ca2+ in cardiomyocytes by PA, unlike that by KCl or ATP, was observed in diabetic myocardium. Thus, it appears that the Fura-2 method for the measurement of Ca2+ homeostasis in cardiomyocytes is useful in studying the pathophysiology and pharmacology of Ca2+ movements.  相似文献   
106.
Durot  I.  Athias  P.  Oudot  F.  Grynberg  A. 《Molecular and cellular biochemistry》1997,175(1-2):253-262
There is evidence that dietary polyunsaturated fatty acids (PUFA) may protect against cardiovascular diseases, but the involvement of the cardiac muscle cell in this beneficial action remain largely unknown. The present study compared the respective influence of n-3 and n-6 PUFA on the function of cultured neonatal rat cardiomyocytes (CM). Cells were grown for 4 days in media enriched either n-3 (eicosapentaenoic acid, EPA and docosahexaenoic acid, DHA) or n-6 (arachidonic acid, AA) PUFA. The PUFA n-6/n-3 ratio in the phospholipids was close to 1 and 20 in the n-3 and n-6 cells, respectively. The transmembrane potentials were recorded using microelectrodes and the contractions were monitored with a photoelectric device. In physiological conditions, the increase of n-6 PUFA level in the phospholipids resulted in a significant decrease in the maximal rate of initial depolarization (–16%). In opposition, the action potential amplitude and duration were not altered, and the cell contractio n outline was not affected. Ischemia was simulated in vitro using a substrate-free, hypoxia-reoxygenation procedure in a specially designed gas-flow chamber. The progressive loss of electrical activity induced by the substrate-free, hypoxic treatment was affected by the n-6/n-3 ratio, since the n-6 rich CM displayed a slower depression of the AP amplitude and duration parameters. Conversely, the recovery of the resting potential (MDP) during reoxygenation was faster in n-3 CM, whereas the recovery of the contraction parameters was unaffected by the fatty acid composition of the cells. These results suggested that, in physiological conditions, the modification of long chain PUFA balance in the phospholipids of cardiac muscle cells may modulate the initial AP upstroke, which is governed by sodium channels. Moreover, the presence of n-3 PUFA appeared to accelerate the electrical depression during substrate-free hypoxia but in turn to allow a faster recovery upon reoxygenation. (Mol Cell Biochem 175: 253–262, 1997)  相似文献   
107.
108.
Stem cell–derived cardiomyocytes (CMs) hold great hopes for myocardium regeneration because of their ability to produce functional cardiac cells in large quantities. They also hold promise in dissecting the molecular principles involved in heart diseases and also in drug development, owing to their ability to model the diseases using patient‐specific human pluripotent stem cell (hPSC)–derived CMs. The CM properties essential for the desired applications are frequently evaluated through morphologic and genotypic screenings. Even though these characterizations are necessary, they cannot in principle guarantee the CM functionality and their drug response. The CM functional characteristics can be quantified by phenotype assays, including electrophysiological, optical, and/or mechanical approaches implemented in the past decades, especially when used to investigate responses of the CMs to known stimuli (eg, adrenergic stimulation). Such methods can be used to indirectly determine the electrochemomechanics of the cardiac excitation‐contraction coupling, which determines important functional properties of the hPSC‐derived CMs, such as their differentiation efficacy, their maturation level, and their functionality. In this work, we aim to systematically review the techniques and methodologies implemented in the phenotype characterization of hPSC‐derived CMs. Further, we introduce a novel approach combining atomic force microscopy, fluorescent microscopy, and external electrophysiology through microelectrode arrays. We demonstrate that this novel method can be used to gain unique information on the complex excitation‐contraction coupling dynamics of the hPSC‐derived CMs.  相似文献   
109.
由于基础研究环境和临床环境之间存在的转化差异,使得药物在临床阶段取得成功仍然具有挑战性。诱导多能干(iPS)细胞的诞生为药物研发领域带来了新的希望,使研究者能在体外人性化各种药理学和毒理学模型。人iPS衍生细胞的可获得性,特别是可以定向分化成特定的功能性细胞、组织和器官,一方面为疾病机制研究与细胞治疗提供了全新的途径。另一方面,转化研究中的生物标记物提供了评估临床前基础研究环境和临床环境下毒理学及药理学影响的可衡量的指标,而iPS细胞给生物标记物的研究带来了全新的思路。从转化研究的角度概述了基于iPS细胞药物发现的现行策略,阐明了iPS细胞的潜力以及生物标志物在药物发现和发展整个过程中的作用,突出在该领域有待改进的地方,以期为进一步相关性研究提供一定参考,为新药研发提供新的思路与方法。  相似文献   
110.
Rationale: Transient receptor potential channels of the ankyrin subtype-1 (TRPA1) are non-selective cation channels that show high permeability to calcium. Previous studies from our laboratory have demonstrated that TRPA1 ion channels are expressed in adult mouse ventricular cardiomyocytes (CMs) and are localized at the z-disk, costamere and intercalated disk. The functional significance of TRPA1 ion channels in the modulation of CM contractile function have not been explored.

Objective: To identify the extent to which TRPA1 ion channels are involved in modulating CM contractile function and elucidate the cellular mechanism of action.

Methods and Results: Freshly isolated CMs were obtained from murine heart and loaded with Fura-2 AM. Simultaneous measurement of intracellular free Ca2+ concentration ([Ca2+]i) and contractility was performed in individual CMs paced at 0.3 Hz. Our findings demonstrate that TRPA1 stimulation with AITC results in a dose-dependent increase in peak [Ca2+]i and a concomitant increase in CM fractional shortening. Further analysis revealed a dose-dependent acceleration in time to peak [Ca2+]i and velocity of shortening as well as an acceleration in [Ca2+]i decay and velocity of relengthening. These effects of TRPA1 stimulation were not observed in CMs pre-treated with the TRPA1 antagonist, HC-030031 (10 µmol/L) nor in CMs obtained from TRPA1?/? mice. Moreover, we observed no significant increase in cAMP levels or PKA activity in response to TRPA1 stimulation and the PKA inhibitor peptide (PKI 14–22; 100 nmol/L) failed to have any effect on the TRPA1-mediated increase in CM contractile function. However, TRPA1 stimulation resulted in a rapid phosphorylation of Ca2+/calmodulin-dependent kinase II (CaMKII) (1–5 min) that correlated with increases in CM [Ca2+]i and contractile function. Finally, all aspects of TRPA1-dependent increases in CM [Ca2+]i, contractile function and CaMKII phosphorylation were virtually abolished by the CaMKII inhibitors, KN-93 (10 µmol/L) and autocamtide-2-related peptide (AIP; 20 µmol/L).

Conclusions: These novel findings demonstrate that stimulation of TRPA1 ion channels in CMs results in activation of a CaMKII-dependent signaling pathway resulting in modulation of intracellular Ca2+ availability and handling leading to increases in CM contractile function. Cardiac TRPA1 ion channels may represent a novel therapeutic target for increasing the inotropic and lusitropic state of the heart.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号