首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   38850篇
  免费   1273篇
  国内免费   1722篇
  2023年   262篇
  2022年   303篇
  2021年   487篇
  2020年   590篇
  2019年   1200篇
  2018年   741篇
  2017年   574篇
  2016年   613篇
  2015年   870篇
  2014年   1453篇
  2013年   2219篇
  2012年   1076篇
  2011年   1690篇
  2010年   1303篇
  2009年   1841篇
  2008年   1793篇
  2007年   1998篇
  2006年   1773篇
  2005年   1556篇
  2004年   1278篇
  2003年   1032篇
  2002年   927篇
  2001年   694篇
  2000年   712篇
  1999年   679篇
  1998年   633篇
  1997年   616篇
  1996年   514篇
  1995年   665篇
  1994年   656篇
  1993年   650篇
  1992年   651篇
  1991年   578篇
  1990年   557篇
  1989年   545篇
  1988年   552篇
  1987年   570篇
  1986年   322篇
  1985年   545篇
  1984年   950篇
  1983年   775篇
  1982年   1012篇
  1981年   665篇
  1980年   677篇
  1979年   679篇
  1978年   275篇
  1977年   257篇
  1976年   225篇
  1975年   197篇
  1974年   151篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
981.
Serotonin- and ten peptide-immunoreactive (IR) cell types were identified in the digestive tract of sea bass (Dicentrarchus labrax L.) larvae of four morphofunctional phases ranging in age from hatching to 61 days. The sequence of appearance and location of endocrine cells during ontogenetic development of the larvae was determined. The differentiation of endocrine cells followed a distal-proximal gradient in the gut which paralleled the morphofunctional differentiation. Serotonin-IR cells were identified in the last portion of the digestive tract from phase I onwards and in the gastric region from phase III, before these regions were morphofunctionally differentiated; met-enkephalin-IR cells were identified from phase II onwards in both the differentiated rectum and the undifferentiated intestine; cholecystokinin (CCK)- and synthetic human gastrin-34-IR cells were located only in the intestine and first found in the undifferentiated intestine of phase II; human gastrin-17-, peptide YY (PYY)- and neuropeptide Y (NPY)-IR cells appeared in the intestine from phase II and in stomach in phase IV, when it showed gastric glands; pancreatic polypeptide (PP)- and glucagon-IR cells were observed in both intestine and stomach, but insulin- and somatostatin-IR cells only in stomach, from phase III, during which the intestine but not the stomach was differentiated. PP- and PYY-, PP- and glucagon-, and PYY- and glucagon-like immunoreactivities coexisted from their first appearance in some cells of the gut.  相似文献   
982.
High affinity melatonin-binding sites have been described, by means of autoradiography with 2-125I-melatonin as the ligand, in more than 60 brain areas of about 20 mammalian species, with dramatic variations in the nature and number of labelled structures among the different species studied. As melatonin is involved in the synchronization of biological rhythms, we have tried to correlate the brain areas containing melatonin-binding sites with some rhythmic functions typical of give species. Therefore, we have studied the location of melatonin-binding sites in the complete brain of five long-day breeders with hibernation cycles, viz. one insectivore and four rodents. With the exception of the suprachiasmatic nuclei and the pars tuberalis of the pituitary, both of which contain binding sites in all five species, few reactive structures are common, even among species from the same family, e.g. the edible dormouse and the garden dormouse.  相似文献   
983.
Immunoreactivity for calbindin was found in nerve endings with irregular laminar shapes in the rat esophagus. In the myenteric ganglia, laminar endings of a range of sizes formed a complex network and appeared to lie at the surface of the ganglion. The myenteric ganglia that contained nerve endings were most abundant in the upper portion of the eosphagus, their number decreasing orally to anally. Calbindin-immunoreactive nerve cell bodies were scattered throughout the esophagus. Laminar terminals were found in the connective tissue of the lamina propria immediately beneath the epithelium and in the muscularis mucosae. Occasional nerve branches formed a network of aborizing endings that surrounded part of the submucosal arterioles. Immunoreactive nerve endings in the mucosa and submucosa were present only in the upper part of the cervical esophagus. Unilateral vagotomy caused a remarkable decrease in the number of the myenteric ganglia containing the calbindin-immunoreactive laminar endings after 15 days or survival; in some of ganglia, the laminar structures disappeared and nerve endings showing weak immunoreactivity had an indistinct appearance, so that the outline of the ganglia became obscure. In operated rats at 24 days, the number of innervated ganglia was about half that in normal rats. However, there was no change in the morphology and the occurrence of the immunoreactive laminar structures in the mucosa and submucosa after denervation. The results show that many of the laminar endings that are immunoreactive for calbindin in the myenteric ganglia are derived from the vagus nerve. Thus, the calbindin-immunoreactive nerve endings with laminar expansions that are found in the rat eosphageal wall could be sensory receptors.  相似文献   
984.
Postnatal change in the distribution of actin filaments in endothelial cells was studied in the rat aorta by use of rhodamine-phalloidin staining and confocal laser scanning microscopy. Endothelial cells of the rat aorta possessed two populations of actin filament bundles, namely, peripheral bands at the cell border and stress fibers running longitudinally in the cytoplasm. Aortic endothelial cells of the neonatal rat contained only stress fibers, whereas those of the 10-day-old rat developed both peripheral bands and stress fibers. After 20 days of age, aortic endothelial cells had predominantly peripheral bands with occasional stress fibers around the branch orifices. During postnatal development the length density of stress fibers in aortic endothelial cells decreased, whereas individual stress fibers in endothelial cells were shortened. Electron-microscopic observation revealed that the high intercellular boundaries of aortic endothelial cells at birth decreased in height and developed cytoplasmic interdigitations after 20 days of age. The occurrence of peripheral bands at the cell border is thought to be closely related to formation of cytoplasmic interdigitation which strengthens the mechanical connection between endothelial cells against increasing transmural pressure. Expression of stress fibers in aortic endothelial cells of the neonatal rat is supposed to be affected by longitudinal elongation of the developing aorta, whereas their postnatal decrease is though to be correlated with the change of fluid shear stress loaded in the aortic endothelium.  相似文献   
985.
Nitric oxide and various neuropeptides in the myenteric plexus regulate esophageal motility. We sought colocalization of nitric oxide synthase and neuropeptides in frozen sections of mid-portion of smoothmuscled opossum esophagus using NADPH-diaphorase activity to mark the synthase and immunoreactivity to detect peptides. The peptides, all with demonstrated physiological activity in this organ, were calcitonin generelated peptide, galanin, neuropeptide Y, substance P, and vasoactive intestinal polypeptide. The ExtrAvidin Peroxidase immunostain for each peptide was carried up to the final peroxidase reaction with 3-amino-9-ethylcarbazole. The NADPH-diaphorase reaction was applied with short incubation to provide light staining just before the peroxidase reaction was performed. We examined sections for the proportions of singly and dually labeled nerve cells in the myenteric plexus. NADPH-diaphorase activity was highly colocalized with calcitonin gene-related peptide (59%), galanin (54%), and vasoactive intestinal polypeptide (53%). It showed little colocalization with neuropeptide Y (10%) and substance P (8%). The proportions of all nerve cells containing each of the substances were: NADPH-diaphorase-33%, calcitonin gene-related peptide-30%, galanin-55%, neuropeptide Y-16%, substance P-35%, and vasoactive intestinal polypeptide-58%. We conclude that the nerves responsible for peristalsis in the esophagus may act by releasing nitric oxide along with other inhibitory substances, calcitonin gene-related peptide, galanin, and vasoactive intestinal polypeptide, but not excitatory substances, neuropeptide Y and substance P.  相似文献   
986.
Nitric oxide synthase in the rat carotid body and carotid sinus   总被引:5,自引:0,他引:5  
The participation of nitric oxide synthase (NOS) in the innervation of the rat carotid body and carotid sinus was investigated by means of NADPH-diaphorase histochemistry and NOS immunohistochemistry using antisera raised against purified neuronal NOS and a synthetic tridecapeptide. NOS was detected in 23% of neurons at the periphery of the carotid bodies. Some negative neurons were surrounded by NOS-positive terminals. NOS-containing varicose nerve fibres innervated the arterial vascular bed and, to a lesser extent, the islands of glomus cells. These fibres persisted after transection of the carotid sinus nerve and are probably derived from intrinsic neurons. Large NOS-positive axonal swellings in the wall of the carotid sinus were absent after transection of the sinus nerve, indicating their sensory origin. The results suggest a neuronal nitrergic control of blood flow, neuronal activity and chemoreception in the carotid body, and an intrinsic role of NO in the process of arterial baroreception.  相似文献   
987.
Pituitary adenylate cyclase-activating polypeptide (PACAP) and helospectin are two vasoactive intestinal polypeptide (VIP)-related neuropeptides that have recently been demonstrated in the mammalian gut; the aim of this study was to reveal their occurrence and localisation in the gastrointestinal tract, swimbladder, urinary bladder and the vagal innervation of the gut of teleosts, using immunohistochemical methods on whole-mounts and sections of these tissues from the Atlantic cod, Gadus morhua and the rainbow trout, Oncorhynchus mykiss. Both PACAP-like and helospectin-like peptides were present in the gut wall of the two species. Immunoreactive nerve fibres were found in all layers but were most frequent in the myenteric plexus and along the circular muscle fibres. Immunoreactivity was also demonstrated in nerves innervating the swimbladder wall, the urinary bladder and blood vessels to the gut. Immunoreactive nerve cell bodies were found in the myenteric plexus of the gut and in the muscularis mucosae of the swimbladder. In the vagus nerve, non-immunoreactive nerve cells were surrounded by PACAP-immunoreactive fibres. Double staining revealed the coexistence of PACAP-like and helospectin-like peptides with VIP in all visualized nerve fibres and in some endocrine cells. It is concluded that PACAP-like and helospectin-like peptides coexist with VIP in nerves innervating the gut of two teleost species. The distribution suggests that both PACAP and helospectin, like VIP, are involved in the control of gut motility and secretion.  相似文献   
988.
989.
We used a computer-assisted morphometry approach to analyze quantitatively the process of cytoplasmic granule formation in mouse pancreatic acinar cells stimulated with pilocarpine to induce secretion. Our findings suggest that each condensing vacuole/immature granule of pancreatic acinar cells is formed by the progressive aggregation of 106 to 128 unit progranules of narrowly fixed volume, define a range of 7.7 to 9.2 for the factor of volume condensation between the largest immature granules and the mature unit granule, and predict that the formation of a single mature unit granule by the aggregation and fusion of unit progranules involves a net reduction of at least 95% in the amount of membrane surface area associated with these structures.  相似文献   
990.
Two different glyceraldehyde-3-phosphate (G3P) dehydrogenase (phosphorylating) activities, namely NAD- and NADP-dependent, have been found in cell extracts of the cyanelle-bearing photosynthetic protist Cyanophora paradoxa. Whereas the two G3P dehydrogenase activities were detected with similar specific activity levels (0.1 to 0.2 U/mg of protein) in extracts of the photosynthetic organelles (cyanelles), only the NAD-dependent activity was found in the cytosol. Thus, a differential intracellular localization occurred. The perfect overlapping of the two G3P dehydrogenase activity peaks of the cyanelle in both hydrophobic interaction chromatography and subsequent FPLC (fast protein liquid chromatography) gel filtration indicated that the two activities were due in fact to a single NAD(P)-dependent G3P dehydrogenase (EC 1.2.1.-) with a molecular mass of 148,000. SDS-PAGE of active fractions from FPLC gel filtration showed that the intensity of the major protein band (molecular mass, 38,000) of the enzyme preparation clearly paralleled the activity elution profile, thus suggesting a tetrameric structure for the cyanelle dehydrogenase. On the other hand, FPLC gel filtration analysis of the cytoplasmic fraction revealed a NAD-dependent G3P dehydrogenase with a native molecular mass of 142,000, being equivalent to the classical glycolytic enzyme (EC 1.2.1.12) present in the cytosol of all the organisms so far studied. The significance of these results is discussed taking into account that the cyanobacteria, photosynthetic prokaryotes which share many structural and biochemical features with cyanelles and are considered as their ancestors, have a similar NAD(P)-dependent G3P dehydrogenase.Abbreviation FPLC Fast protein liquid chromatography  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号