首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1007篇
  免费   147篇
  国内免费   31篇
  1185篇
  2024年   5篇
  2023年   12篇
  2022年   37篇
  2021年   53篇
  2020年   46篇
  2019年   75篇
  2018年   52篇
  2017年   42篇
  2016年   33篇
  2015年   43篇
  2014年   79篇
  2013年   106篇
  2012年   44篇
  2011年   54篇
  2010年   16篇
  2009年   35篇
  2008年   25篇
  2007年   50篇
  2006年   43篇
  2005年   38篇
  2004年   37篇
  2003年   35篇
  2002年   30篇
  2001年   21篇
  2000年   29篇
  1999年   30篇
  1998年   14篇
  1997年   9篇
  1996年   10篇
  1995年   12篇
  1994年   12篇
  1993年   7篇
  1992年   8篇
  1991年   9篇
  1990年   6篇
  1989年   4篇
  1988年   2篇
  1987年   1篇
  1986年   3篇
  1985年   7篇
  1984年   3篇
  1983年   3篇
  1982年   1篇
  1981年   1篇
  1979年   1篇
  1975年   1篇
  1972年   1篇
排序方式: 共有1185条查询结果,搜索用时 0 毫秒
941.
目的:探讨甘西鼠尾草(SPM)对大鼠高原肺动脉高压(HAPH)的干预作用及可能的机制。方法:将雄性SD大鼠随机分成对照组、缺氧组、SPM(0.5 g/kg、1 g/kg、2 g/kg)剂量组,每组14只,对照组饲养于西宁(海拔约2260 m),其余组均饲养于玛多县人民医院(海拔约4260 m)。SPM剂量组灌胃不同浓度的SPM(1 ml/100 g),浓度分别为0.5 g/kg、1 g/kg、2 g/kg,对照组和缺氧组灌胃等体积蒸馏水,每日一次,连续4周后,测定大鼠平均肺动脉压(mPAP)并取相同部位肺组织置液氮保存备用。采用RT-PCR法测定每组大鼠肺组织中的细胞增殖核抗原(PCNA)、细胞周期素依赖激酶(CDK4)、细胞周期蛋白D(CyclinD1)、RhoA(Ras同源基因家族成员A)、ROCK1、ROCK2的mRNA表达水平。结果:与对照组比较,缺氧组大鼠mPAP、肺组织中PCNA、CDK4、CyclinD1、RhoA、ROCK1、ROCK2的mRNA表达水平均明显升高(P<0.01)。与缺氧组比较,SPM剂量组大鼠的mPAP、肺组织中PCNA、CDK4、CyclinD1、RhoA、ROCK1、ROCK2的mRNA表达水平均明显降低(P<0.05或P<0.01)。结论:SPM对大鼠HAPH具有一定的预防作用,其机制可能与抑制肺动脉平滑肌细胞过度增殖和RhoA/Rho激酶(ROCK)信号通路过度激活有关。  相似文献   
942.
The aim of this article is to briefly review available data regarding changes in the structure of microvessels observed in patients with diabetes mellitus, and possible correction by effective treatment. The development of structural changes in the systemic vasculature is the end result of established hypertension. In essential hypertension, small arteries of smooth muscle cells are restructured around a smaller lumen and there is no net growth of the vascular wall, although in some secondary forms of hypertension, a hypertrophic remodelling may be detected. Moreover, in non-insulin-dependent diabetes mellitus a hypertrophic remodelling of subcutaneous small arteries is present. Indices of small resistance artery structure, such as the tunica media to internal lumen ratio, may have a strong prognostic significance in hypertensive and diabetic patients, over and above all other known cardiovascular risk factors. Therefore, regression of vascular alterations is an appealing goal of antihypertensive treatment. Different antihypertensive drugs seem to have different effect on vascular structure. In diabetic hypertensive patients, a significant regression of structural alterations of small resistance arteries with drugs blocking the renin–angiotensin system (angiotensin-converting enzyme inhibitors, angiotensin II receptor blockers) was demonstrated. Alterations in the microcirculation represent a common pathological finding, and microangiopathy is one of the most important mechanisms involved in the development of organ damage as well as of clinical events in patients with diabetes mellitus. Renin–angiotensin system blockade seems to be effective in preventing/regressing alterations in microvascular structure.  相似文献   
943.
Recently, we have found that transfer of a segment of chromosome 4 between I16 and Npy markers from the Brown Norway (BN) rat into the spontaneously hypertensive rat (SHR) significantly attenuated both hypertension (measured by telemetry) and insulin resistance (measured as plasma insulin/glucose ratios before and after a high fructose diet) in the SHR progenitor strain. To map the putative quantitative trait loci (QTL) more precisely, we derived an (SHR×SHR.BN-chr.4)F2 population to search for recombinants that will enable us to produce congenic sublines. The F2 animals were genotyped in markers equally distributed along the interval of the chromosome 4 differential segment. Altogether, five new congenic sublines with overlapping segments of the differential chromosome 4 are being produced. New congenic sublines will enable us to test the hypothesis that insulin resistance and hypertension can be influenced by closely linked genes or perhaps even the same gene(s) on chromosome 4.  相似文献   
944.
Increased oxidative stress is a well-known phenomenon in dialysis patients. However, the contribution of hypertension to the oxidative stress in peritoneal dialysis patients has not yet been assessed. The present study aimed to investigate if hypertension had an additional effect on oxidative stress in peritoneal dialysis patients. A total of 50 patients treated with peritoneal dialysis were divided into two groups: The patients with mean of last three blood pressure results as 135/90 mmHg and above were considered hypertensive, the patients with lower blood pressure were considered normotensive. The control group included 25 healthy individuals. Serum malondialdehyde (MDA), advanced oxidation protein product (AOPP), myeloperoxidase (MPO), catalase (CAT) and glutathione peroxidase (GSH-Px) levels were measured in all groups. MDA level, an indicator of lipid peroxidation, was significantly higher in the hypertensive group compared to the control group, while the increase in the normotensive group was not significant. However, the difference between the hypertensive and normotensive groups was significant. The levels of AOPP, an indicator of protein oxidation level, and MPO, an indicator of neutrophil activation, were not different between the groups, while the activities of antioxidant CAT and GSH-Px decreased in both normotensive and hypertensive groups compared to the control group, and there was no significant difference between the patient groups. This study shows that both normotensive and hypertensive peritoneal dialysis patients have increased-oxidative stress and decreased antioxidant levels and hypertension might have an additional effect on oxidative stress by increasing MDA level in peritoneal dialysis patients.  相似文献   
945.
Worldwide, hypertension is reported to be in approximately a quarter of the population and is the leading biomedical risk factor for mortality worldwide. In the vasculature hypertension is associated with endothelial dysfunction and increased inflammation leading to atherosclerosis and various disease states such as chronic kidney disease2, stroke3 and heart failure4. An initial step in vascular inflammation leading to atherogenesis is the adhesion cascade which involves the rolling, tethering, adherence and subsequent transmigration of leukocytes through the endothelium. Recruitment and accumulation of leukocytes to the endothelium is mediated by an upregulation of adhesion molecules such as vascular cell adhesion molecule-1 (VCAM-1), intracellular cell adhesion molecule-1 (ICAM-1) and E-selectin as well as increases in cytokine and chemokine release and an upregulation of reactive oxygen species5. In vitro methods such as static adhesion assays help to determine mechanisms involved in cell-to-cell adhesion as well as the analysis of cell adhesion molecules. Methods employed in previous in vitro studies have demonstrated that acute increases in pressure on the endothelium can lead to monocyte adhesion, an upregulation of adhesion molecules and inflammatory markers6 however, similar to many in vitro assays, these findings have not been performed in real time under physiological flow conditions, nor with whole blood. Therefore, in vivo assays are increasingly utilised in animal models to demonstrate vascular inflammation and plaque development. Intravital microscopy is now widely used to assess leukocyte adhesion, rolling, migration and transmigration7-9. When combining the effects of pressure on leukocyte to endothelial adhesion the in vivo studies are less extensive. One such study examines the real time effects of flow and shear on arterial growth and remodelling but inflammatory markers were only assessed via immunohistochemistry10. Here we present a model for recording leukocyte adhesion in real time in intact pressurised blood vessels using whole blood perfusion. The methodology is a modification of an ex vivo vessel chamber perfusion model9 which enables real-time analysis of leukocyte -endothelial adhesive interactions in intact vessels. Our modification enables the manipulation of the intraluminal pressure up to 200 mmHg allowing for study not only under physiological flow conditions but also pressure conditions. While pressure myography systems have been previously demonstrated to observe vessel wall and lumen diameter11 as well as vessel contraction this is the first time demonstrating leukocyte-endothelial interactions in real time. Here we demonstrate the technique using carotid arteries harvested from rats and cannulated to a custom-made flow chamber coupled to a fluorescent microscope. The vessel chamber is equipped with a large bottom coverglass allowing a large diameter objective lens with short working distance to image the vessel. Furthermore, selected agonist and/or antagonists can be utilized to further investigate the mechanisms controlling cell adhesion. Advantages of this method over intravital microscopy include no involvement of invasive surgery and therefore a higher throughput can be obtained. This method also enables the use of localised inhibitor treatment to the desired vessel whereas intravital only enables systemic inhibitor treatment.  相似文献   
946.
ABSTRACT

The specific purpose of this communication is to summarize the relevant details of the methods utilized to conduct, analyze, and interpret the ambulatory blood pressure (BP) monitoring (ABPM)-obtained patient data in both MAPEC and Hygia Chronotherapy Trial, including details of the sampling requirements in terms of duration and frequency, proper calculation of ABPM-derived mean values, prognostic and therapeutic implications of BP dipping, and limitations of the 24 h BP mean as diagnostic/prognostic parameter still mistakenly recommended by some hypertension guidelines.  相似文献   
947.
Right ventricular (RV) failure is the primary cause of death in pulmonary arterial hypertension (PAH). We hypothesized that heart‐relevant microRNAs, that is myomiRs (miR‐1, miR‐133a, miR‐208, miR‐499) and miR‐214, can have a role in the right ventricle in the development of PAH. To mimic PAH, male Wistar rats were injected with monocrotaline (MCT, 60 mg/kg, s.c.); control group received vehicle. MCT rats were divided into two groups, based on the clinical presentation: MCT group terminated 4 weeks after MCT administration and prematurely terminated group (ptMCT) displaying signs of terminal disease. Myocardial damage genes and candidate microRNAs expressions were determined by RT‐qPCR. Reduced blood oxygen saturation, breathing disturbances, RV enlargement as well as elevated levels of markers of myocardial damage confirmed PH in MCT animals and were more pronounced in ptMCT. MyomiRs (miR‐1/miR‐133a/miR‐208a/miR‐499) were decreased and the expression of miR‐214 was increased only in ptMCT group (P < 0.05). The myomiRs negatively correlated with Fulton index as a measure of RV hypertrophy in MCT group (P < 0.05), whereas miR‐214 showed a positive correlation (P < 0.05). We conclude that the expression of determined microRNAs mirrored the disease severity and targeting their pathways might represent potential future therapeutic approach in PAH.  相似文献   
948.
目的:研究原发性高血压(EH)患者脂质代谢及氧化应激水平与幽门螺旋杆菌(HP)感染的相关性。方法:将2018年2月~2019年12月期间广东医科大学附属医院收治的200例EH患者纳入研究,根据是否合并HP感染分为感染组84例与非感染组116例。比较两组患者的脂质代谢以及氧化应激水平,患者脂质代谢及氧化应激水平与HP感染的关系予以Spearman相关性分析。此外,比较两组患者的靶器官功能损伤情况。结果:感染组甘油三酯(TG)、总胆固醇(TC)、低密度脂蛋白胆固醇(LDL-C)及游离脂肪酸(FFA)水平均高于非感染组,而高密度脂蛋白胆固醇(HDL-C)水平低于非感染组(P0.05)。感染组丙二醛(MDA)水平高于非感染组,而超氧化物歧化酶(SOD)水平低于非感染组(P0.05)。经Spearman相关性分析可得:EH患者HP感染与TG、TC、LDL-C以及FFA、MDA均呈正相关(rs=0.592、0.546、0.610、0.637、0.604,P0.05),而与HDL-C及SOD均呈负相关(rs=-0.625,-0.532,P0.05)。感染组颈动脉内膜中膜厚度高于非感染组,而肾小球滤过率及射血分数均低于非感染组(P0.05)。结论:EH患者HP感染和脂质代谢及氧化应激密切相关,且会增加靶器官功能损伤。  相似文献   
949.
The function of the right heart is to pump blood through the lungs, thus linking right heart physiology and pulmonary vascular physiology. Inflammation is a common modifier of heart and lung function, by elaborating cellular infiltration, production of cytokines and growth factors, and by initiating remodeling processes 1.Compared to the left ventricle, the right ventricle is a low-pressure pump that operates in a relatively narrow zone of pressure changes. Increased pulmonary artery pressures are associated with increased pressure in the lung vascular bed and pulmonary hypertension 2. Pulmonary hypertension is often associated with inflammatory lung diseases, for example chronic obstructive pulmonary disease, or autoimmune diseases 3. Because pulmonary hypertension confers a bad prognosis for quality of life and life expectancy, much research is directed towards understanding the mechanisms that might be targets for pharmaceutical intervention 4. The main challenge for the development of effective management tools for pulmonary hypertension remains the complexity of the simultaneous understanding of molecular and cellular changes in the right heart, the lungs and the immune system.Here, we present a procedural workflow for the rapid and precise measurement of pressure changes in the right heart of mice and the simultaneous harvest of samples from heart, lungs and immune tissues. The method is based on the direct catheterization of the right ventricle via the jugular vein in close-chested mice, first developed in the late 1990s as surrogate measure of pressures in the pulmonary artery5-13. The organized team-approach facilitates a very rapid right heart catheterization technique. This makes it possible to perform the measurements in mice that spontaneously breathe room air. The organization of the work-flow in distinct work-areas reduces time delay and opens the possibility to simultaneously perform physiology experiments and harvest immune, heart and lung tissues.The procedural workflow outlined here can be adapted for a wide variety of laboratory settings and study designs, from small, targeted experiments, to large drug screening assays. The simultaneous acquisition of cardiac physiology data that can be expanded to include echocardiography5,14-17 and harvest of heart, lung and immune tissues reduces the number of animals needed to obtain data that move the scientific knowledge basis forward. The procedural workflow presented here also provides an ideal basis for gaining knowledge of the networks that link immune, lung and heart function. The same principles outlined here can be adapted to study other or additional organs as needed.  相似文献   
950.
A long isoform of the human Epithelial Sodium Channel (ENaC) α subunit has been identified, but little data exist regarding the properties or regulation of channels formed by α728. The baseline whole cell conductance of oocytes expressing trimeric α728βγ channels was 898.1 ± 277.2 and 49.59 ± 13.2 µS in low and high sodium solutions, respectively, and was 11 and 2 fold higher than the conductances of α669βγ in same solutions. α728βγ channels were also 2 to 5 fold less sensitive to activation by the serine proteases subtilisin and trypsin than α669βγ in low and high Na+ conditions. The long isoform exhibited lower levels of full length and cleaved protein at the plasma membrane and a rightward shifted sensitivity to inhibition by increases of [Na+]i. Both channels displayed similar single channel conductances of 4 pS, and both were activated to a similar extent by reducing temperature, altogether indicating that activation of baseline conductance of α728βγ was likely mediated by enhanced channel activity or open probability. Expression of α728 in native kidneys was validated in human urinary exosomes. These data demonstrate that the long isoform of αENaC forms the structural basis of a channel with different activity and regulation, which may not be easily distinguishable in native tissue, but may underlie sodium hyperabsorption and salt sensitive differences in humans.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号