首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15621篇
  免费   1016篇
  国内免费   1358篇
  2024年   48篇
  2023年   277篇
  2022年   312篇
  2021年   504篇
  2020年   438篇
  2019年   526篇
  2018年   407篇
  2017年   439篇
  2016年   522篇
  2015年   575篇
  2014年   740篇
  2013年   908篇
  2012年   546篇
  2011年   645篇
  2010年   562篇
  2009年   701篇
  2008年   758篇
  2007年   847篇
  2006年   716篇
  2005年   677篇
  2004年   653篇
  2003年   572篇
  2002年   509篇
  2001年   421篇
  2000年   422篇
  1999年   372篇
  1998年   410篇
  1997年   321篇
  1996年   339篇
  1995年   300篇
  1994年   247篇
  1993年   229篇
  1992年   246篇
  1991年   219篇
  1990年   176篇
  1989年   175篇
  1988年   143篇
  1987年   119篇
  1986年   108篇
  1985年   148篇
  1984年   114篇
  1983年   74篇
  1982年   107篇
  1981年   94篇
  1980年   66篇
  1979年   72篇
  1978年   55篇
  1977年   41篇
  1976年   26篇
  1973年   22篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
981.
Our view of heredity can potentially be distorted by the ease of introducing heritable changes in the replicating gene sequences but not in the cycling assembly of regulators around gene sequences. Here, key experiments that have informed the understanding of heredity are reinterpreted to highlight this distortion and the possible variety of heritable changes are considered. Unlike heritable genetic changes, which are always associated with mutations in gene sequence, heritable epigenetic changes can be associated with physical or chemical changes in molecules or only changes in the system. The transmission of cycling stores along the continuous lineage of cells that connects successive generations creates waves of activity and localization of the molecules that together form the cell code for development in each generation. As a result, heritable epigenetic changes can include any that can alter a wave such as changes in form, midline, frequency, amplitude, or phase. Testing this integrated view of all heritable information will require the concerted application of multiple experimental approaches across generations.  相似文献   
982.
The secretory activity of the two branched malpighian tubules (MTs) of the second‐instar larva in Aeolothrips intermedius is described. MTs of adult thrips have the typical ultrastructure of excretory epithelium with apical microvilli containing long mitochondria and a rich system of basal membrane infoldings. In the second‐instar larva just before pupation, the ultrastructure of MT epithelial cells is dramatically different, and there are numerous huge Golgi systems in the cytoplasm. These cells are involved in an intense secretory activity to produce an electron‐dense product which is released into the MTs lumen. This secretion is extruded from the hindgut and used by the second‐instar larva to build an elaborate protective cocoon for pupation. Electron‐spray‐ionization mass spectrometry analysis of the cocoon revealed the presence of a β‐N‐acetyl‐glucosamine, the main component of chitin, which is also present in the cocoons of Neuroptera and some Coleoptera. J. Morphol., 2010. © 2009 Wiley‐Liss, Inc.  相似文献   
983.
This study examined the fecundity, oviposition, nymphal development and longevity of field‐collected samples of the tropical bedbug, Cimex hemipterus (Fabricius) (Hemiptera: Cimicidae). Under environmental conditions of 26±2°C, 70 ± 5% relative humidity and a 12‐h photoperiod, with bloodmeals provided by a human host, six strains of tropical bedbug had a fecundity of up to 50 eggs per lifetime, over 11–14 oviposition cycles. Increased feeding frequency improved fecundity. After feeding and mating, adult females normally took 2–3 days to produce a first batch of eggs. The oviposition period lasted 2–7 days before cessation of the oviposition cycle. The egg incubation period usually lasted 5–7 days before the emergence of first instars. The nymphs underwent five stadia (the first four of which each took 3–4 days, whereas the last took 4–5 days) before becoming adults at a sex ratio of 1 : 1. More than five bloodmeals were required by the nymphs to ensure a successful moult. Unmated adults lived significantly longer than mated adults (P < 0.05). Unmated females lived up to almost 7 months, but the longevity of mated males and females did not differ significantly (P > 0.05).  相似文献   
984.
《Current biology : CB》2020,30(3):442-454.e7
  1. Download : Download high-res image (180KB)
  2. Download : Download full-size image
  相似文献   
985.
We investigated ovary and testis development of Alligator mississippiensis during the first 5 months posthatch. To better describe follicle assembly and seminiferous cord development, we used histochemical techniques to detect carbohydrate‐rich extracellular matrix components in 1‐week, 1‐month, 3‐month, and 5‐month‐old gonads. We found profound morphological changes in both ovary and testis. During this time, oogenesis progressed up to diplotene arrest and meiotic germ cells increasingly interacted with follicular cells. Concomitant with follicles becoming invested with full complements of granulosa cells, a periodic acid Schiff's (PAS)‐positive basement membrane formed. As follicles enlarged and thecal layers were observed, basement membranes and thecal compartments gained periodic acid‐methionine silver (PAMS)‐reactive fibers. The ovarian medulla increased first PAS‐ and then PAMS reactivity as it fragmented into wide lacunae lined with low cuboidal to squamous epithelia. During this same period, testicular germ cells found along the tubule margins were observed progressing from spermatogonia to round spermatids located within the center of tubules. Accompanying this meiotic development, interstitial Leydig cell clusters become more visible and testicular capsules thickened. During the observed testis development, the thickening tunica albuginea and widening interstitial tissues showed increasing PAS‐ and PAMS reactivity. We observed putative intersex structures in both ovary and testis. On the coelomic aspect of testes were cell clusters with germ cell morphology and at the posterior end of ovaries, we observed “medullary rests” resembling immature testis cords. We hypothesize laboratory conditions accelerated gonad maturation due to optimum conditions, including nutrients and temperature. Laboratory alligators grew more rapidly and with increased body conditions compared with previous measured, field‐caught animals. Additionally, we predict the morphological maturation observed in these gonads is concomitant with increased endocrine activities. J. Morphol. 2010. © 2009 Wiley‐Liss, Inc.  相似文献   
986.
Cell lineage studies in the clade Eutrochozoa, and especially the Spiralia, remains a rich and relatively untapped source for understanding broad evolutionary developmental problems; including (1) the utility of cell timing formation for phylogenetic hypotheses; (2) the evolution of cell timing changes and its relation to heterochronic patterns; (3) stereotypy or lack thereof in rates of change of cell growth during evolution and its relation to both evolutionary history and current usage; and (4) how mosaic cleavage timing variation may be expected to differ from other groups. A compilation of available cell timing information was made from previous studies where each division was explicitly followed and the total number of cells followed was greater than 24. From that compilation, we performed a series of heuristic and quantitative analyses, including a phylogenetic analysis using cell timing data as characters and analyses of timing variation across all taxa. Our results show that: (1) cell lineage data reconstructs a phylogenetic hypothesis that has similarities, especially among the Mollusca. to the patterns found in morphological and molecular analyses; (2) the mesentoblast (4d) is a unique cell compared to other cell in that it speeds up and slows down relative to other cells in taxa with both unequal and equal cell sizes; (3) some cells that form in the same quartet at the same point in the cell lineage hierarchy have much lower variations than analogous other cells, arguing for architectural constraint or stabilizing selection acting on those cells; and (4) although variation in cell timing generally increases during development, timing of formation of progeny cells in the first quartet has lower variation than the parent cells, arguing that some regulation-like behavior might be present.  相似文献   
987.
988.
Distribution of the alpha subunit of the stimulatory G protein (G(s)alpha) was analyzed in membrane and cytosolic (supernatant 200 000 g) fractions from rat cortex, thalamus and hippocampus during the course of post-natal development. In parallel, changes in beta-adrenoceptor density and adenylyl cyclase activity were determined. Long (G(s)alphaL) and short (G(s)alphaS) variants of G(s)alpha were assessed by immunoblotting using specific polyclonal antisera reacting with both G(s)alpha isoforms. Post-natal development was associated with an increase in the total amount of brain G(s)alpha. G(s)alphaL was the dominant isoform of G(s)alpha in the membrane fractions of all studied brain regions and its amount increased markedly between post-natal day (PD) 1 and 90. The level of membrane-bound G(s)alphaS also elevated during post-natal development, but more pronounced changes were found in cytosolic G(s)alphaS. Although only a small amount of G(s)alphaS (much smaller than G(s)alphaL) was detected among soluble proteins shortly after birth, G(s)alphaS prevailed over G(s)alphaL at PD90. The G(s)alphaL/G(s)alphaS ratio decreased, respectively, from 3.2 to 1.2 and from 5.0 to 1.5 in the membrane fractions of cortex and hippocampus, but remained almost constant in thalamus between PD1 and 90. More dramatic changes were found in the cytosolic fractions of all studied brain regions: the G(s)alphaL/G(s)alphaS ratio decreased sharply in cortex (from 14.1 to 0.9), hippocampus (from 3.7 to 0.8), and also in thalamus (from 9.5 to 0.5). These results demonstrate that the membrane-cytosol balance of G(s)alpha proteins alters dramatically during the course of brain development. Both G(s)alphaL and G(s)alphaS were expressed in a region- and age-specific manner, which suggests different roles in the maturation of the brain tissue. A cyc(-) reconstitutive assay of cytosolic G(s)alpha indicated that only approximately 20% of this protein was functional, compared with membrane-bound G(s)alpha, and its ability to reconstitute adenylyl cyclase activity increased during the course of maturation. The number of beta-adrenoceptors increased sharply during early post-natal development but only slightly in adulthood, and both GTP- and isoproterenol-stimulated adenylate cyclase activity reached peak values around PD12.  相似文献   
989.
Profound alterations in the function of GABA occur over the course of postnatal development. Changes in GABA(A) receptor expression are thought to contribute to these differences in GABAergic function, but how subunit changes correlate with receptor function in individual developing neurons has not been defined precisely. In the current study, we correlate expression of 14 different GABA(A) receptor subunit mRNAs with changes in the pharmacological properties of the receptor in individual hippocampal dentate granule cells over the course of postnatal development in rat. We demonstrate significant developmental differences in GABA(A) receptor subunit mRNA expression, including greater than two-fold lower expression of alpha1-, alpha4- and gamma2-subunit mRNAs and 10-fold higher expression of alpha5-mRNA in immature compared with adult neurons. These differences correlate both with regional changes in subunit protein level and with alterations in GABA(A) receptor function in immature dentate granule cells, including two-fold higher blockade by zinc and three-fold lower augmentation by type-I benzodiazepine site modulators. Further, we find an inverse correlation between changes in GABA(A) receptor zinc sensitivity and abundance of vesicular zinc in dentate gyrus during postnatal development. These findings suggest that developmental differences in subunit expression contribute to alterations in GABA(A) receptor function during postnatal development.  相似文献   
990.
August Weismann is famous for having argued against the inheritance of acquired characters. However, an analysis of his work indicates that Weismann always held that changes in external conditions, acting during development, were the necessary causes of variation in the hereditary material. For much of his career he held that acquired germ-plasm variation was inherited. An irony, which is in tension with much of the standard twentieth-century history of biology, thus exists – Weismann was not a Weismannian. I distinguish three claims regarding the germ-plasm: (1) its continuity,(2) its morphological sequestration, and (3) its variational sequestration. With respect to changes in Weismann's views on the cause of variation, I divide his career into four stages. For each stage I analyze his beliefs on the relative importance of changes in external conditions and sexual reproduction as causes ofvariation in the hereditary material. Weismann believed, and Weismannism denies, that variation, heredity, and development were deeply intertwined processes. This article is part of a larger project comparing commitments regarding variation during the latter half of the nineteenth century. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号