首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   0篇
  国内免费   2篇
  2022年   1篇
  2020年   1篇
  2019年   2篇
  2017年   1篇
  2015年   1篇
  2014年   1篇
  2013年   1篇
  2012年   3篇
  2009年   2篇
  2006年   3篇
  2004年   2篇
  2003年   1篇
  2001年   3篇
  1999年   1篇
  1994年   1篇
  1980年   2篇
排序方式: 共有26条查询结果,搜索用时 15 毫秒
11.
Aim  To assess the relative impacts of spatial, local environmental and habitat connectivity on the structure of aquatic macrophyte communities in lakes designated for their conservation value. Location  Selected lakes of conservation importance all over Scotland, representing a wide variety of lake habitat types and associated macrophyte communities. Methods  Local environmental variables and species occurrence were measured in the field. Spatial variables were generated using principal coordinates of neighbour matrices (PCNM) analysis. Connectivity between each lake and its neighbours was defined as either (i) all lakes within a radius of 5, 10, 25, 50, 75 or 100 km; (ii) all lakes in same river system; or (iii) all lakes in the same catchment and upstream of the lake. Using variance partitioning within canonical correspondence analysis, the relative impact of E = local environment, S = space and C = lake connectivity was compared on submerged (n = 119 lakes) and emergent (n = 96 lakes) macrophyte assemblages. Results  Local environmental conditions, such as total phosphorus, alkalinity/conductivity and the presence of invasive species, as well as spatial gradients were key drivers of observed variation in macrophyte communities; e.g., for submerged macrophytes, a combination of local to moderate factors relating to water chemistry and broad‐scale gradients reflecting elevation and climate are important. Spatially structured environmental variables explained a large portion of observed variation. Main conclusions  Our findings confirmed the need to manage local environmental pressures such as eutrophication, but suggested that the traditional catchment approach was insufficient. The spatial aggregation of environmental and connectivity factors indicated that a landscape scale approach should be used in lake management to augment the risk assessment to conservation species from the deterioration of suitable lake sites over broad biogeographic areas.  相似文献   
12.
The structure of photosynthetic elements was investigated in leaves of 42 boreal plant species featuring different degrees of submergence (helophytes, neustophytes, and hydatophytes). The mesophyll structure types were identified for all these species. Chlorenchyma tissues and phototrophic cells were quantitatively described by such characteristics as the sizes of cells and chloroplasts in the mesophyll and epidermis, the abundance of cells and chloroplasts in these tissues, the total surface area of cells and chloroplasts per unit leaf area, the number of plastids per cell, etc. The hydrophytes typically had thick leaves (200–350 m) with a well-developed aerenchyma; their specific density per unit area (100–200 mg/dm2) was lower than in terrestrial plants. Mesophyll cells in aquatic plants occupied a larger volume (5–20 × 103m3) than epidermal cells (1–15 × 103m3). The number of mesophyll cells per unit leaf area was nearly 1.5 times higher than that of epidermal cells. Chloroplasts were present in the epidermis of almost all species, including emergent leaves, but the ratio of the chloroplast total number to the number of all plastids varied depending on the degree of leaf submergence. The total number of plastids per unit leaf area (2–6 × 106/cm2) and the surface of chloroplasts per unit leaf area (2–6 cm2/cm2) were lower in hydrophytes than in terrestrial plants from climatically similar habitats. The functional relations between mesophyll parameters were similar for hydrophytes and terrestrial plants (a positive correlation between the leaf weight per unit area, leaf thickness, and the number of mesophyll cells per unit leaf area), although no correlation was found in hydrophytes between the volume of mesophyll cells and the leaf thickness. Phototrophic tissues in aquatic plants contributed a larger fraction to the leaf weight than in terrestrial plants, because the mechanical tissues were less developed in hydrophytes. The CO2assimilation rates by leaves were lower in hydrophytes than in terrestrial plants, because the total surface area of chloroplasts per unit leaf area is comparatively small in hydrophytes, which reduces the conductivity for carbon dioxide diffusion towards the carboxylation sites.  相似文献   
13.
Background and Aims Rock pools are small, geologically stable freshwater ecosystems that are both hydrologically and biologically isolated. They harbour high levels of plant endemism and experience environmental unpredictability driven by the presence of water over variable temporal scales. This study examined the hypothesis that the sediment seed bank in monsoon tropical freshwater rock pools would persist through one or more periods of desiccation, with seed dormancy regulating germination timing in response to rock pool inundation and drying events.Methods Seeds were collected from seven dominant rock pool species, and germination biology and seed dormancy were assessed under laboratory conditions in response to light, temperature and germination stimulators (gibberellic acid, karrikinolide and ethylene). Field surveys of seedling emergence from freshwater rock pools in the Kimberley region of Western Australia were undertaken, and sediment samples were collected from 41 vegetated rock pools. Seedling emergence and seed bank persistence in response to multiple wetting and drying cycles were determined.Key Results The sediment seed bank of individual rock pools was large (13 824 ± 307 to 218 320 ± 42 412 seeds m−2 for the five species investigated) and spatially variable. Seedling density for these same species in the field ranged from 13 696 to 87 232 seedlings m−2. Seeds of rock pool taxa were physiologically dormant, with germination promoted by after-ripening and exposure to ethylene or karrikinolide. Patterns of seedling emergence varied between species and were finely tuned to seasonal temperature and moisture conditions, with the proportions of emergent seedlings differing between species through multiple inundation events. A viable seed bank persisted after ten consecutive laboratory inundation events, and seeds retained viability in dry sediments for at least 3 years.Conclusions The persistent seed bank in freshwater rock pools is likely to provide resilience to plant communities against environmental stochasticity. Since rock pool communities are often comprised of highly specialized endemic and range-restricted species, sediment seed banks may represent significant drivers of species persistence and diversification in these ecosystems.  相似文献   
14.
4种水生植物对富营养化水体氮磷去除效果的研究   总被引:3,自引:0,他引:3  
以灯心草、水田芥、菹草和轮藻为试验对象,研究了其在两种不同程度富营养化水体中的生长状况及对水体中总氮(TN)、总磷(TP)、氨氮(NH4+-N)和化学耗氧量(COD)的净化效果。结果表明,在轻度富营养化水体中水田芥效果最好,培养20 d后的水田芥对总氮、总磷、氨氮和化学耗氧量的吸收率分别为75.28%、93.00%、76.35%和83.74%,其它3种水生植物对水体也都有较好的净化效果;在重度富营养化水体中灯心草效果最好,培养20天后的灯心草对总氮、总磷、氨氮和化学耗氧量的吸收率分别为89.30%、83.11%、83.41%和78.56%,但水田芥和轮藻的净化效果相对较差。  相似文献   
15.
In alkaline calcareous waters, hydrophytes become encrusted with carbonate precipitates of a complex nature which alter bulk chemical analyses of the plants. The manganese, zinc and copper concentrations, and the ash content of two aquatic plants, Egeria densa and Potamogeton nodusus, differed considerably depending on the cleaning procedure used and, therefore, the amount of marl encrustation included in the analyses. Tapwater washed plants, retaining the marl, consistently had ash contents two to three times higher than acid-cleaned plants and exhibited higher trace metal concentrations, especially manganese.  相似文献   
16.
Aquatic plants comprise few species worldwide, yet introductions of nonindigenous hydrophytes represent some of the most severe examples of biological invasions. Often innocuous in their indigenous regions, many aquatic plant species have caused extreme ecological and economic consequences when introduced into nonindigenous habitats. Typically, aquatic plant invasions are unnoticed or overlooked until they are perceived as problematic. By then, plants are virtually impossible to eradicate and negative ecological impacts caused by their spread into natural communities are irreparable. We present criteria to facilitate decisions whether a species should be characterized as nonindigenous or invasive. Historical data are used to clarify methods of introduction, avenues and means of dispersal, and extent of invasiveness of the following aquatic plants in southern New England: Acorus calamus, Butomus umbellatus, Cabomba caroliniana, Callitriche stagnalis, Egeria densa, Hydrilla verticillata, Limnobium spongia, Marsilea quadrifolia, Myriophyllum aquaticum, Myriophyllum heterophyllum, Myriophyllum spicatum, Najas minor, Najas guadalupensis, Nasturtium officinale, Nymphoides peltata, Potamogeton crispus, Trapa natans and Veronica beccabunga.  相似文献   
17.
1. We have limited knowledge of the effects of land use in general and of drainage ditching in particular on macrophyte communities in lakes. I quantified catchment land use, including drainage ditching, as well as water quality and the number of macrophyte species in 17 Swedish lakes in summer 2005. 2. Land use within 1 km of the studied lakes was analysed in a geographic information system. The following variables were included: areas of forests, mires, agricultural land and urbanization, length of drainage ditches (classified according to the use of the land they drained), and shortest distance from lake to an urban area. To extract and analyse general trends in the data sets, redundancy analysis was used. 3. Water quality was explained mainly by three land‐use related variables: the lengths of agricultural, forest and mire ditches. The length of agricultural ditches was positively correlated with lake water conductivity, total dissolved solids, Ca, N and total organic carbon (TOC). The lengths of forest and mire ditches were positively correlated with lake water characteristics, especially TOC. 4. The number of species representing different macrophyte life forms was explained by three environmental variables: conductivity, and lengths of forest and agricultural ditches. The numbers of isoetids, nymphaeids, elodeids and total obligate hydrophytes were negatively correlated with length of forest ditches. In contrast, the number of lemnids and helophytes was positively correlated with conductivity and length of agricultural ditches. Furthermore, the number of isoetids was exponentially related (negatively) to lengths of agricultural and forest ditches, indicating a threshold response to drainage ditch length. 5. The results suggest that effects on water quality and macrophyte communities result from drainage ditching in the lake catchments rather than from land use itself. Given the total area of drainage‐ditched land worldwide (millions of ha in Scandinavia alone), drainage ditching should be considered when evaluating environmental impacts on lake water quality and macrophyte occurrence and when determining reference conditions for catchment land use.  相似文献   
18.
唐玥  童春富  刘毛亚  朱宜平  陈蓓蓓 《生态学报》2020,40(13):4528-4537
为探究不同水生植物碳(C)、氮(N)、磷(P)含量及其化学计量比随季节的变化特征,本研究以上海金泽水库库区四种典型挺水植物旱伞草(Cyperus alternifolius),芦苇(Phragmites australis),千屈菜(Lythrum salicaria),水葱(Scirpus validus)为例,开展了季节性取样及室内分析,结果显示:(1)四种植物碳氮磷含量的变化规律不同。其中,对于植物碳含量,旱伞草和芦苇均无显著差异,千屈菜和水葱仅在冬季显著降低。对于植物氮含量,除旱伞草外,其他植物均在春季生长初期显著降低,在夏季生长旺盛时期显著升高,而旱伞草四季无显著差异。对于植物磷含量,水葱在四季均无显著差异,芦苇和千屈菜在冬季植物休眠期显著降低,旱伞草和芦苇磷含量在夏季显著降低。(2)四种植物C/N/P的季节性变化特征不同。其中,旱伞草C/N四季间无显著差异,其他3种植物C/N在春季生长初期显著升高;在C/P方面,水葱四季间无显著差异,芦苇和千屈菜在春季显著降低,旱伞草和芦苇C/P在夏季显著升高;常绿植物旱伞草N/P在四季无显著差异,其他3种植物N/P均在冬季生物量低时显著升...  相似文献   
19.
20.
Surface mining for coal has dramatically altered millions of hectares throughout the Appalachian region of eastern North America. Flat benches and vertical high walls have replaced well-drained slopes, and wetlands have developed accidentally on abandoned benches. Surface mining is continuing in this region, but new regulations do not include specifications for wetland construction in the reclamation process. Recent research has suggested that many ecosystem services appropriate for the Appalachian landscape could be performed by constructed wetlands. Inclusion of wetland construction in a reclamation plan could lead to a net increase in wetland acreage locally, as well as offset the loss of natural and/or accidental wetlands. By studying accidentally-formed wetlands, we hope to determine what species can be established in wetlands that are constructed to enhance nontreatment goals in reclamation. Study sites included 14 emergent wetlands in Wise County, Virginia. Sampling in June and August detected a total of 94 species in 36 vascular plant families. Obligate wetlands species, species that occur in wetlands over 99 percent of the time, were found in all 14 sites and included 26 species. The presence of so many wetland species without intentional management efforts suggests that wetland establishment could become a common component of mine reclamation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号