首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   805篇
  免费   25篇
  国内免费   81篇
  911篇
  2024年   1篇
  2023年   5篇
  2022年   3篇
  2021年   9篇
  2020年   19篇
  2019年   20篇
  2018年   22篇
  2017年   20篇
  2016年   24篇
  2015年   19篇
  2014年   28篇
  2013年   38篇
  2012年   22篇
  2011年   21篇
  2010年   5篇
  2009年   35篇
  2008年   41篇
  2007年   48篇
  2006年   37篇
  2005年   47篇
  2004年   29篇
  2003年   26篇
  2002年   35篇
  2001年   29篇
  2000年   22篇
  1999年   20篇
  1998年   27篇
  1997年   21篇
  1996年   19篇
  1995年   18篇
  1994年   17篇
  1993年   18篇
  1992年   17篇
  1991年   19篇
  1990年   21篇
  1989年   14篇
  1988年   11篇
  1987年   17篇
  1986年   13篇
  1985年   10篇
  1984年   5篇
  1983年   6篇
  1982年   4篇
  1981年   6篇
  1980年   16篇
  1979年   6篇
  1977年   1篇
排序方式: 共有911条查询结果,搜索用时 10 毫秒
71.
Pedunculate oak (Quercus robur L.) is particularly sensitive to decline in clayey soils presenting a high-perched temporary water table. These soils induce two successive constraints in one-year cycle: water excess (and hypoxy) in winter and early spring, and water shortage in summer (water stress being more restrictive to oak). We determined the porosity and water properties of temporarily waterlogged clayey soils supporting forest stands of decliningQuercus robur trees in a 101yr-old oak stand in Belgium (50°06N, 4°16E). Roots unevenly colonized the soil down to 1.6m: fine roots (diameter<5mm) were mostly distributed on the surface horizons (0–0.3 m) and around 1.3m deep, despite dense clayey horizons appearing at 0.35m depth. Clay content below this depth reached 46–51. Illite and vermiculite were the dominant clay minerals. The clayey horizons exhibited marked shrink–swell properties: bulk density at 30kPa increased from 1.41 to 1.88gcm–3 from the surface to 2m depth. There was also evidence of hypoxic conditions caused by water saturation of pore space in the rooting zone from October to mid-April. Extractable water (EW), calculated between moisture tensions of 5 and 1600kPa was 152.8mm. The level of perched temporary water table strongly depended on the seasonal rhythm of water uptake by trees and on the shrink–swell behaviour of soil.  相似文献   
72.
亚热带人工林下植被根际土壤酶化学计量特征   总被引:1,自引:0,他引:1       下载免费PDF全文
为探讨林下植被根际土壤酶化学计量特征及其对林分类型和季节的响应, 该研究以江西省泰和县千烟洲试验站典型人工杉木(Cunninghamia lanceolata)、马尾松(Pinus massoniana)和湿地松(Pinus elliottii)林林下优势灌草檵木(Loropetalum chinense)、杨桐(Adinandra millettii)、格药柃(Eurya muricata)、狗脊蕨(Woodwardia japonica)和暗鳞鳞毛蕨(Dryopteris atrata)为对象, 在植被生长初期(4月)和旺盛期(7月)测定优势灌草根际土壤与碳(C)循环相关的β-1,4-葡萄糖苷酶(BG)、与氮(N)循环相关的β-1,4-N-乙酰葡糖氨糖苷酶(NAG)和亮氨酸氨基肽酶(LAP)、与磷(P)循环相关的酸性磷酸酶(AP)活性、酶化学计量比及土壤理化性质。结果发现: (1)根际土壤与C和N循环相关的酶活性以及BG:AP (酶C:P)在不同林下植被之间存在显著差异, 而与P循环相关的酶活性差异不显著。林分类型和取样季节显著影响BG:(NAG+LAP)(酶C:N), 且林下植被类型、林分类型和取样季节交互影响酶C:P。主成分分析表明, 根际土壤酶的活性及计量比在不同林下植被(檵木不同于格药柃, 且二者显著区别于其他物种)、林分类型(杉木林区别于马尾松、湿地松林)和取样季节之间均存在显著差异。土壤硝态氮(NO3 --N)、铵态氮(NH4 +-N)、可溶性有机碳(DOC)含量和碳氮比(C:N)是影响林下植被根际土壤酶的活性及化学计量比的主要因素。(2)标准主轴回归分析表明, 林下植被根际土壤lg(BG)、lg(NAG+LAP)和lg(AP)之间存在显著线性关系, lgBG:lg(NAG+LAP):lgAP (酶C:N:P)约为1:1:1.3, 酶C:P及(NAG+LAP):AP (酶N:P)分别为0.14和0.15。AP远大于BG和NAG+LAP的活性, 导致lg(BG)和lg(NAG+LAP)与lg(AP)的回归斜率极显著偏离1。说明林下植被根际土壤酶的活性及计量比受植被种类、林分类型及取样季节影响, 且基质有效性在其中发挥重要作用。相较于C循环和N循环, 微生物会分配更多资源用于P循环相关酶的生产, 暗示亚热带人工林林下植被根际土壤微生物生长和活性更易受P限制。  相似文献   
73.
中国典型冻土区土壤可培养细菌多样性   总被引:2,自引:0,他引:2  
[目的]对比分析中国典型高纬度冻土区和高海拔冻土区土壤可培养细菌的多样性.[方法]采用NM、TSA 、R2A 3种培养基分离培养不同冻土区土壤可培养细菌,用通用引物扩增分离的细菌16S rRNA基因,根据系统发育分析进行鉴定.[结果]从6个样品中得到冻土土壤可培养细菌的菌落数量为4.70×103 -2.57×105 cfu/g(土壤干重),根据不同的菌落形态分离出144株可培养细菌.纯培养物的16S rRNA基因部分序列分析表明:我国高纬度冻土区土壤样品中的细菌分别属于Firmicutes分支(59.52%)、Gammaproteobacteria 分支(38.10%)、Betaproteobacteria分支(2.38%),其中假单胞菌属(Pseudomonas)、芽胞杆菌属(Bacillus)、类芽胞杆菌属(Paenibacillus)的菌株为该区域的三大优势菌群.我国高海拔冻土区土壤样品中分离细菌属于Gammaproteobacteria分支(89.22%)、Firmicutes分支(8.82%)和Bacteroidetes分支(1.96%)o优势菌群为假单胞菌属( Pseudomonas).[结论]我国高纬度冻土区和高海拔冻土区土壤具有较高的可培养细菌多样性;不同类型冻土区土壤可培养细菌群落组成不同.本文研究结果将为我国冻土区土壤细菌资源研究与利用提供理论依据.  相似文献   
74.
Black soils in Northeast China are characteristic of high soil organic carbon (SOC) density and were strongly influenced by human activities. Therefore, any change in SOC pool of these soils would not only impact the regional and global carbon cycle, but also affect the release and immobilization of nutrients. In this study, we reviewed the research progress on SOC storage, budget, variation, and fertility under different scenarios. The results showed that the organic carbon storage of black soils was 646.2 TgC and the most potential sequestration was 2887.8 g m−2. According to the SOC budget, the net carbon emission of black soils was 1.3 TgC year−1 under present soil management system. The simulation of CENTURY model showed that future climate change and elevated CO2 concentration, especially the increase of precipitation, would increase SOC content. Furthermore, fertilization and cropping sequence obviously influenced SOC content, composition, and allocation among different soil particles. Long-term input of organic materials such as manure and straw renewed original SOC, improved soil structure and increased SOC accumulation. Besides, soil erosion preferred to transport soil particles with low density and fine size, decreased recalcitrant SOC fractions at erosion sites and increased activities of soil microorganism at deposition sites. After natural grasslands were converted into croplands, obvious variation of soil chemical nutrients, physical structure, and microbial activities had taken place in surface and subsurface soils, and represented a degrading trend to a certain degree. Our studies suggested that adopting optimal management such as conservation tillage in black soil region is an important approach to sequester atmospheric CO2 and to slow greenhouse effects.  相似文献   
75.
Summary Soil temperature, moisture, and CO2 were monitored at four sites along an elevation transect in the eastern Mojave Desert from January to October, 1987. Climate appeared to be the major factor controlling CO2 partial pressures, primarily through its influence of rates of biological reactions, vegetation densities, and organic matter production. With increasing elevation, and increasing actual evapotranspiration, the organic C, plant density, and the CO2 content of the soils increased. Between January and May, soil CO2 concentrations at a given site were closely related to variations in soil temperature. In July and October, temperatures had little effect on CO2, presumably due to low soil moisture levels. Up to 75% of litter placed in the field in March was lost by October whereas, for the 3 lower elevations, less than 10% of the litter placed in the field in April was lost through decomposition processes.  相似文献   
76.
The rate and extent of polynuclear aromatic hydrocarbons (PAH) biodegradation in a set of aged model soils that had been contaminated with crude oil at the high concentrations (i.e.,>20,000?mg/kg) normally found in the environment were measured in 90-week slurry bioremediation experiments. Soil properties such as organic matter content, mineral type, particle diameter, surface area, and porosity did not significantly influence the PAH biodegradation kinetics among the 10 different model soils. A comparison of aged and freshly spiked soils indicates that aging affects the biodegradation rate and extent only for higher-molecular-weight PAHs, while the effects of aging are insignificant for 4-ring PAHs and total PAHs. In all model soils with the exception of kaolinite clay, the rate of abiotic desorption was faster than the rate of biodegradation during the initial phase of bioremediation treatment, indicating that PAH biodegradation was limited by microbial factors. Similarly, any of the higher-molecular-weight PAHs that were still present after 90 weeks of treatment were released rapidly during abiotic desorption tests, which demonstrates that bioavailability limitations were not responsible for the recalcitrance of these hydrocarbons. Indeed, an analysis of microbial counts indicates that a severe reduction in hydrocarbon degrader populations may be responsible for the observed incomplete PAH biodegradation. Therefore, it can be concluded that the recalcitrance of PAHs during bioremediation is not necessarily due to bioavailability limitations and that these residual contaminants therefore might pose a greater risk to environmental receptors than previously thought.  相似文献   
77.
广东大宝山矿区生态环境退化现状及治理途径探讨   总被引:37,自引:0,他引:37  
根据对广东大宝山矿区的实地调查、测试和所采集土、水样品的化学分析结果,对该区生态环境退化和向下游排放污染物现状进行报道.矿坑似乎是大宝山矿最重要的污染源地,据有限土壤样品分析结果推算,当其所含无机还原态硫彻底氧化后,平均1t矿坑表土可产出207kg浓硫酸.大部分矿坑表土和排土场废土已经历不同程度的酸化.实验室模拟试验显示:5g强烈酸化的矿坑表土在接力水提条件下可产出超过750mL的酸性“矿水”(pH<3.9).实测数据表明:排入翁江支流的矿水,其酸度大大超过国家规定的排放标准,大多数重金属元素的浓度也超过了国家规定的污水综合排放标准的最高允许值.从技术的角度来看,对大宝山矿区生态环境退化和向下游排放污染物状况的治理,宜采用环境地球化学工程与生物修复技术相结合的综合治理方法.  相似文献   
78.
Cadmium, copper, and lead were extracted from suspensions of contaminated soils using metal chelating exchange resin membranes. Nine soils with widely varying properties and Cd, Cu and Pb levels were tested. Soil suspensions made up with 4 g in 40 mL deionized water were equilibrated with 5 cm2 Ca-saturated Chelex exchange resin membrane which was retained inside a polypropylene bag and shaken at 150 rpm for 24 hrs. Resin membrane extractable Cd, Cu and Pb of the soils were correlated with Cd, Cu, and Pb uptake by young wheat seedlings grown in these soils and compared with soil Cd, Cu, and Pb extracted by 0.1 M HCl, 0.01 M CaCl2, and 0.005 M Diethylenetriamine pentaacetic acid (DTPA). The amounts of Cd, Cu and Pb extracted by the Ca-saturated Chelex membrane from all tested soils correlated well with those absorbed by young wheat seedlings. The Ca-saturated Chelex membrane extractable Cd, Cu and Pb of the soil had the strongest correlation with plant uptake Cd, Cu and Pb among the extraction methods we tested. It was demonstrated that the Ca-saturated Chelex membrane extraction is an appropriate method in simultaneously estimating Cd, Cu and Pb phytoavailability of soil and is applicable to a wide range of soils.  相似文献   
79.
Distribution of different forms of Zn in 16 acid alluvial rice growing soils of West Bengal (India) and their transformation on submergence were studied. The results showed that more than 84% of total Zn occurred in the relatively inactive clay lattice-bound form while a smaller fractionviz. 1.1, 1.6, 11.1 and 2.0 per cent of the total occurred as water-soluble plus exchangeable, organic complexed, amorphous sesquioxide-bound and crystalline sesquioxide bound forms, respectively. All these four Zn forms showed significant negative correlations with soil pH (r=−0.48**, −0.39*, −0.61** and −0.67**, respectively), while the latter two Zn forms showed significant positive correlations with Fe2O3 (0.68** and 0.88***) and Al2O3 (0.89*** and 0.75***) content of the soils. The different Zn forms were found to have positive and significant correlations amongst each other, suggesting the existence of a dynamic equilibrium of these forms in soil. Submergence caused an increase in the amorphous sesquioxide-bound form of Zn and a decrease in each of the other three forms. The magnitude of such decreases in water-soluble plus exchangeable and crystalline sesquioxide-bound forms was found to be correlated negatively with initial pH values of the soils and positively with the increase in the amorphous sesquioxide-bound form, indicating their adsorption on the surface of the freshly formed hydrated oxides of Fe, which view was supported by the existence of significant positive correlation between the increase in the amorphous sesquioxide-bound form of Zn and that in AlCl3-extractable iron. The existence of a positive correlation between the decrease in crystalline sesquioxide-bound Zn and that in Fe2O3 content in soil suggested that on waterlogging the soil Zn occluded in the cry talline sesquioxide was released as a result of reduction of Fe2O3.  相似文献   
80.
Abstract.  1. Primary and logged lowland dipterocarp forest sites were sampled for subterranean termites using soil pits located on a grid system in order to detect any patchiness in their distribution.
2. A spatial pattern in termite distributions was observed in the primary and logged sites, but the response differed between soil-feeding and non-soil-feeding termites.
3. Spatial analysis showed that soil-feeding termites were homogeneously distributed in the primary forest but significantly aggregated in the logged forest. This pattern was reversed for non-soil-feeding termites and may result from differences in resource provisioning between the two sites.
4. Gaps in termite distribution comprised a greater area than patches for both feeding groups and sites, but gaps dominated the logged site.
5. A significant association between soil-feeding and non-soil-feeding termite distributions occurred at both sites. This arose from an association between patches in the primary forest and between gaps in the logged forest.
6. Termite spatial pattern was optimally observed at a minimum extent of 64 m and lag of 2 m.
7. The spatially explicit SADIE (Spatial Analysis by Distances IndicEs) analyses were more successful than (non-spatially explicit) multivariate analysis (Canonical Correspondence Analysis) at detecting associations between termite spatial distributions and that of other biotic and abiotic variables.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号