首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   258篇
  免费   25篇
  国内免费   33篇
  2023年   2篇
  2022年   1篇
  2021年   3篇
  2020年   5篇
  2019年   13篇
  2018年   9篇
  2017年   10篇
  2016年   12篇
  2015年   6篇
  2014年   8篇
  2013年   7篇
  2012年   10篇
  2011年   15篇
  2010年   11篇
  2009年   9篇
  2008年   18篇
  2007年   10篇
  2006年   11篇
  2005年   16篇
  2004年   10篇
  2003年   12篇
  2002年   19篇
  2001年   15篇
  2000年   9篇
  1999年   9篇
  1998年   6篇
  1997年   9篇
  1996年   2篇
  1995年   4篇
  1994年   4篇
  1993年   8篇
  1992年   5篇
  1991年   1篇
  1990年   11篇
  1989年   4篇
  1987年   1篇
  1986年   4篇
  1985年   3篇
  1984年   1篇
  1982年   2篇
  1976年   1篇
排序方式: 共有316条查询结果,搜索用时 15 毫秒
91.
川西亚高山不同暗针叶林群落类型的冠层降水截留特征   总被引:11,自引:1,他引:10  
在林分和小流域尺度上,应用模型研究了四川卧龙亚高山暗针叶林冠层的降水截留特征.结果表明:生长季节(5—10月),箭竹-岷江冷杉原始林冠层截留系数在33%~72%之间,平均48%;冠层截留量与降水量之间呈显著的线性关系,截留系数与降水量之间呈负指数函数关系;试验小流域内,植被冠层最大截留量的平均值为1.74mm,不同林分间的差异显著,其顺序为藓类-箭竹-岷江冷杉林>草类-箭竹-岷江冷杉林>藓类-杜鹃-岷江冷杉林>草类-杜鹃-岷江冷杉林>杜鹃灌丛;冠层最大截留量与叶面积指数(LAI)之间呈极显著的线性关系;冠层截留量、冠层最大截留量、附加截留量分别占同期降水量的39%、25%和14%.所选模型对整个生长季平均截留量的模拟效果较好,相对误差为9%~14%.  相似文献   
92.
1. Faster growing, larger and/or more aggressive crayfish species are predicted to dominate permanent waterbodies. We tested this prediction using a 9 year dataset for two species of crayfish (Procambarus alleni and Procambarus fallax) co‐existing in a sub‐tropical flowing slough in southern Florida. Using a series of laboratory and mesocosm experiments we also compared life history traits and performance of the respective species to test mechanisms that could explain dominance shifts in the local crayfish assemblages. 2. Over the 9‐year period, P. alleni densities were the greatest in shallower, shorter‐hydroperiod areas bordering the slough, while P. fallax densities were higher in deeper, longer‐hydroperiod central areas. These areas were separated by 0.8–2 km of continuous wetland with no apparent barriers to movement between them. 3. Density of P. fallax was not strongly affected by any measures of hydrological variation, while P. alleni density increased with more severe drought conditions. Following the strongest droughts, P. alleni colonized areas in the centre of the slough where they had been absent or scarce in wetter years. 4. We conducted experiments to compare growth rates, drought tolerance, and competitive dominance of these species. P. alleni survived drought conditions better, had higher growth rates, and was the dominant competitor for space and food. While drought probably limits P. fallax in the drier slough habitats, neither drought sensitivity nor interspecific competition with P. fallax can explain decreases of P. alleni with wetter conditions. 5. Our results indicate that a competition‐colonization tradeoff cannot explain the crayfish compositional dynamics in this wetland because P. alleni is both the best competitor and the best at surviving in and colonizing areas with the strongest droughts. Future attention should focus on the potential for selective effects of predators that co‐vary with hydrology. 6. The traits (large size, fast growth, competitive dominance) exhibited by P. alleni, which is absent in long‐hydroperiod wetlands, are those exhibited by dominant crayfish in permanent lakes and streams containing fish. Although these traits make crayfish less vulnerable to fish in some lakes and streams, life‐history models of community structure across permanence gradients suggest the opposite traits should be favoured for co‐existence with fish.  相似文献   
93.
Aim We evaluated variation in fish assemblages on the basis of taxonomic composition and functional groups based on Pleistocene glacial boundaries in the Ohio River basin. We tested for the influence of habitat and hydrology on fish assemblage variation. Location Ohio River basin of North America, including the states of Ohio, Indiana and Illinois. Methods Fish collection sites were identified as Wisconsinan, pre‐Wisconsinan or unglaciated regions. Multivariate analyses, multi‐response permutation procedures, discriminant analysis and indicator species analyses were used to test whether taxonomic and functional assemblages were distinct among regions with varying glacial histories. Principal components analysis was used to identify habitat and water quality, as well as hydrological gradients that could be discerned by glacial region. Results We identified significant differences in both taxonomic and functional fish assemblage structure and habitat variation among regions that had different glaciation histories. The largest differences in taxonomic and functionally based fish communities were for unglaciated and pre‐Wisconsinan regions, while unglaciated and Wisconsinan regions were most similar. We correctly classified study regions in 71% and 60% of sites using taxonomy and functional analyses, respectively. Wisconsinan sites were characterized by Cyprinidae and Catostomidae assemblages with high abundances of tolerant fishes that tended to occur in habitats with reduced current velocity. Pre‐Wisconsinan sites were characterized by Cyprinidae, Catostomidae, Centrarchidae and Percidae families with increased abundances of intolerant fishes that tended to occur in habitats with coarser substrates and increased water velocity in streams of varying size. Unglaciated sites were characterized by Cyprinidae and Percidae families and were not closely associated with any habitat‐based functional group. Habitat in the unglaciated and pre‐Wisconsinan sites was significantly different from that in the Wisconsinan sites, which were characterized by increased channel structure and reduced stream size. Main conclusions Pleistocene glaciation events formed a lasting template of predictable regional differences in stream habitat and in the corresponding taxonomic and functional fish assemblage structures. While many factors impact the distribution of fishes, these results suggest that historical influences such as glaciation may be used to further explain the underlying mechanisms of spatial variation in fish assemblages.  相似文献   
94.
The relationship between river flows, summarized by hydrological indices, and catches of Australian bass Macquaria novemaculeata from recreational fishing competitions were examined in the Hawkesbury‐Nepean River system. Between 55 and 198 fishermen took part in six monthly fishing competitions. The number of hours fished increased from 570 to 1800 h between 1998 and 2001. A total of 11 275 Australian bass were caught over the study period. The percentage of young‐of‐the‐year (YOY) Australian bass and the catch of fish per unit effort was influenced by either the flow regime occurring in the same year and flow in the previous year. The number of Australian bass caught per unit effort was positively associated with the median volume of water and the number and duration of high flow events occurring in the previous year. The percentage of YOY Australian bass caught in any one year was positively associated with the median flow in the same year of capture and the maximum, mean and variation of daily flows, the number and duration of high flow events and the greatest rise and fall of daily flows in the previous year.  相似文献   
95.
Background: Snow and ice melt provide sensitive indicators of climate change and serve as the primary source of stream flow in alpine basins.

Aims: We synthesise the results of hydrological and hydrochemical studies during the period 1995–2014, building on a long history of earlier work focused on snow and water on Niwot Ridge and the adjacent Green Lakes Valley (GLV), which is part of the Niwot Ridge Long Term Ecological Research site (NWT LTER).

Methods: These studies are discussed in the context of how snow, snowmelt and runoff reflect changing local climate. We review recent results of snow, snowmelt, hydrology and hydrochemistry from the plot to the basin scale, utilising new tools such as continuous global positioning system (GPS) measurements of snow depth, along with remotely-sensed measurements of snow-covered area and melt, combined with long-term measurements of snow properties, discharge and solute and isotopic content of water.

Results and Conclusions: Surface–groundwater interactions are important components of water quantity and quality in alpine basins. Some or most snowmelt infiltrates underlying soils and bedrock, transporting soil and bedrock products to surface waters. Infiltrating snowmelt, along with increased melt of stored ice, increases the hydrologic connectivity between the terrestrial and aquatic systems. Alpine basins are being impacted by increases in atmospheric nitrogen deposition, which has caused changes in soil microbial processes such as nitrification. Nitrate, dissolved organic carbon and dissolved organic nitrogen are thus flushed from soils and talus to streams. Our long-term results show that alpine catchments, such as Green Lake 4 at NWT LTER+, have the greatest sensitivity and least resilience to climate warming, with any warming leading to increased water yields.  相似文献   
96.
Riparian ash forests subjected to seasonal drought are among the most endangered ecosystems in Europe. They are threatened by climate warming causing aridification and by land-use changes modifying river flow. To assess the impacts of these two stress factors on riparian forests, we studied radial growth and xylem anatomical traits in five narrow-leaved ash (Fraxinus angustifolia) stands across wide climatic and ecological gradients from northern Italy to southern Portugal. Radial growth rates and earlywood hydraulic diameter (Dh) were directly correlated, whilst earlywood vessel density and growth rates were inversely associated. Ash growth positively responded to precipitation. Higher and lower rates of growth increase in response to precipitation were found in dry (annual precipitation 357–750 mm, annual water balance −39 to −48 mm) and wet (annual precipitation 1030 mm, annual water balance 27 mm) sites, respectively. Wet conditions in autumn and winter of the year prior to tree-ring formation lead to larger Dh values, except in the wet site where warmer conditions from prior autumn to current spring were positively associated to wider vessels. Growth was also enhanced by a higher river flow, reflecting higher soil moisture due to elevated groundwater table levels. Peaks in river flow from late winter to early spring increased Dh in dry-continental sites. Growth and potential hydraulic conductivity in drought-prone riparian ash forests are differently impacted by climate variability and river flow depending on site and hydrological conditions. Nevertheless, covariation between radial growth and the earlywood vessel diameter was found, regardless of site specific differences. Wood production and hydraulic conductivity are coordinated through the production of large earlywood vessels which may allow reaching higher growth rates.  相似文献   
97.
Large‐scale soy agriculture in the southern Brazilian Amazon now rivals deforestation for pasture as the region's predominant form of land use change. Such landscape‐level change can have substantial consequences for local and regional hydrology, but these effects remain relatively unstudied in this ecologically and economically important region. We examined how the conversion to soy agriculture influences water balances and stormflows using stream discharge (water yields) and the timing of discharge (stream hydrographs) in small (2.5–13.5 km2) forested and soy headwater watersheds in the Upper Xingu Watershed in the state of Mato Grosso, Brazil. We monitored water yield for 1 year in three forested and four soy watersheds. Mean daily water yields were approximately four times higher in soy than forested watersheds, and soy watersheds showed greater seasonal variability in discharge. The contribution of stormflows to annual streamflow in all streams was low (<13% of annual streamflow), and the contribution of stormflow to streamflow did not differ between land uses. If the increases in water yield observed in this study are typical, landscape‐scale conversion to soy substantially alters water‐balance, potentially altering the regional hydrology over large areas of the southern Amazon.  相似文献   
98.
Although microtopographic heterogeneity is common in bottomland hardwood forests, it is rarely considered in bottomland restoration efforts. The objective of this study was to determine the responses of hydrologic condition, soil physiochemical properties, and introduced and colonizing vegetation to created microtopography and soil treatments at a landfill borrow pit in northern Texas. A series of mounds and pools were created and planted with fast‐growing pioneer species as well as more desirable, later‐successional species. Erosion control mats were installed on half the plots as a source of organic matter. Erosion control mats had little influence on introduced seedling survival or colonizing species abundance, but microtopography strongly influenced hydrologic condition, soil properties, seedling survival and growth, and colonizing species abundance and distribution. Pools were flooded during much of the summer months and had significantly higher nitrate and total nitrogen concentrations than mounds. Topographic position had little effect on survival of pioneer species, but mortality of most later‐successional species was highest in pools. Colonizing species distribution and abundance were also strongly related to topographic position. Despite differences in soil nutrient concentration among topographic zones, hydrologic condition likely had the strongest influence on growth and survival of planted species and distribution of colonizing species. Creating microtopography resulted in a spatially heterogeneous system that reflected variations in natural bottomlands, and introducing a mix of species (pioneer and later‐successional) across topographic and hydrologic gradients may improve the establishment and survival of a diverse community when hydrologic condition is highly variable or difficult to predict.  相似文献   
99.
Developing high‐quality scientific research will be most effective if research communities with diverse skills and interests are able to share information and knowledge, are aware of the major challenges across disciplines, and can exploit economies of scale to provide robust answers and better inform policy. We evaluate opportunities and challenges facing the development of a more interactive research environment by developing an interdisciplinary synthesis of research on a single geographic region. We focus on the Amazon as it is of enormous regional and global environmental importance and faces a highly uncertain future. To take stock of existing knowledge and provide a framework for analysis we present a set of mini‐reviews from fourteen different areas of research, encompassing taxonomy, biodiversity, biogeography, vegetation dynamics, landscape ecology, earth‐atmosphere interactions, ecosystem processes, fire, deforestation dynamics, hydrology, hunting, conservation planning, livelihoods, and payments for ecosystem services. Each review highlights the current state of knowledge and identifies research priorities, including major challenges and opportunities. We show that while substantial progress is being made across many areas of scientific research, our understanding of specific issues is often dependent on knowledge from other disciplines. Accelerating the acquisition of reliable and contextualized knowledge about the fate of complex pristine and modified ecosystems is partly dependent on our ability to exploit economies of scale in shared resources and technical expertise, recognise and make explicit interconnections and feedbacks among sub‐disciplines, increase the temporal and spatial scale of existing studies, and improve the dissemination of scientific findings to policy makers and society at large. Enhancing interaction among research efforts is vital if we are to make the most of limited funds and overcome the challenges posed by addressing large‐scale interdisciplinary questions. Bringing together a diverse scientific community with a single geographic focus can help increase awareness of research questions both within and among disciplines, and reveal the opportunities that may exist for advancing acquisition of reliable knowledge. This approach could be useful for a variety of globally important scientific questions.  相似文献   
100.
Altered river flows and fragmented habitats often simplify riverine communities and favor non‐native fishes, but their influence on life‐history expression and survival is less clear. Here, we quantified the expression and ultimate success of diverse salmon emigration behaviors in an anthropogenically altered California river system. We analyzed two decades of Chinook salmon monitoring data to explore the influence of regulated flows on juvenile emigration phenology, abundance, and recruitment. We then followed seven cohorts into adulthood using otolith (ear stone) chemical archives to identify patterns in time‐ and size‐selective mortality along the migratory corridor. Suppressed winter flow cues were associated with delayed emigration timing, particularly in warm, dry years, which was also when selection against late migrants was the most extreme. Lower, less variable flows were also associated with reduced juvenile and adult production, highlighting the importance of streamflow for cohort success in these southernmost populations. While most juveniles emigrated from the natal stream as fry or smolts, the survivors were dominated by the rare few that left at intermediate sizes and times, coinciding with managed flows released before extreme summer temperatures. The consistent selection against early (small) and late (large) migrants counters prevailing ecological theory that predicts different traits to be favored under varying environmental conditions. Yet, even with this weakened portfolio, maintaining a broad distribution in migration traits still increased adult production and reduced variance. In years exhibiting large fry pulses, even marginal increases in their survival would have significantly boosted recruitment. However, management actions favoring any single phenotype could have negative evolutionary and demographic consequences, potentially reducing adaptability and population stability. To recover fish populations and support viable fisheries in a warming and increasingly unpredictable climate, coordinating flow and habitat management within and among watersheds will be critical to balance trait optimization versus diversification.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号