首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   774篇
  免费   98篇
  国内免费   85篇
  2024年   7篇
  2023年   14篇
  2022年   23篇
  2021年   16篇
  2020年   37篇
  2019年   37篇
  2018年   28篇
  2017年   22篇
  2016年   28篇
  2015年   32篇
  2014年   37篇
  2013年   40篇
  2012年   26篇
  2011年   46篇
  2010年   20篇
  2009年   44篇
  2008年   35篇
  2007年   49篇
  2006年   47篇
  2005年   45篇
  2004年   34篇
  2003年   32篇
  2002年   31篇
  2001年   23篇
  2000年   29篇
  1999年   25篇
  1998年   18篇
  1997年   6篇
  1996年   21篇
  1995年   10篇
  1994年   10篇
  1993年   13篇
  1992年   14篇
  1991年   5篇
  1990年   5篇
  1989年   5篇
  1988年   7篇
  1987年   4篇
  1986年   4篇
  1985年   8篇
  1984年   9篇
  1983年   4篇
  1982年   2篇
  1980年   2篇
  1979年   1篇
  1978年   1篇
  1958年   1篇
排序方式: 共有957条查询结果,搜索用时 568 毫秒
911.
912.
《植物生态学报》2017,41(9):1020
Water is a vital resource for plant survival, growth and distribution, and it is of significance to explore mechanisms of plant water-relations regulation and responses to drought in ecophysiology and global change ecology. Plants adapt to different climates and soil water regimes and develop divergent water-regulation strategies involving a suite of related traits, of which two typical types are isohydric and anisohydric behaviors. It is critical to distinguish water-regulation strategies of plants and reveal the underlying mechanisms for plant breeding and vegetation restoration especially in xeric regions; and it is also important for developing more accurate vegetation dynamic models and predicting vegetation distribution under climate change scenarios. In this review, we first recalled the definitions of isohydric and anisohydric regulations and three quantitative classification methods that were established based on the relationships (1) between stomatal conductance and leaf water potential, (2) between stomatal conductance and vapor pressure deficit, (3) between predawn and midday leaf water potentials. We then compared the two water-regulation strategies in terms of hydraulics and carbon-economics traits. We synthesized the mechanisms of plant water-regulation and found that the interaction between hydraulic and chemical signals was the dominant factor controlling plant water-regulation behavior. Last, we proposed three promising aspects in this field: (1) to explore reliable and universal methods for classifying plant water-regulation strategies based on extensive investigation of the traits related with plant water-relations in various regions; (2) to explore relationships between plant water-regulation strategies and traits of hydraulics, morphology, structure, and function in order to provide reliable parameters for improving vegetation dynamic models; and (3) to deeply understand the processes of plant water-regulation at different spatial and temporal scales, and reveal mechanisms of plants’ responses and adaption to environmental stresses (especially drought).  相似文献   
913.
Abstract. Localized burning of a leaf causes a rapid change in apoplastic electrical potential throughout the shoot of wheat seedlings ('variation potential'). It also causes marked increases in turgor pressure in epidermal cells of adjoining leaves. These turgor increases indicate rapid propagation throughout the seedling, of a hydraulic pressure wave from the site of wounding. Evidence is presented that this pressure wave is caused by relief of xylem tension, by water released from damaged cells in the wounded region. It is demonstrated that, in the absence of wounding, pressure waves imposed at the tip of one leaf can travel to neighbouring leaves, and can there induce change in apoplastic electrical potential similar to a 'variation potential'. This indicates that the hydraulic event produced by wounding is the signal responsible for systemic induction of the 'variation potential'. This signal has been termed 'Ricca's factor'. It is suggested that arrival of the hydraulic wave alters leaf water potential and thereby induces stomatal activity. Leaf surface potential may be dominated by electrogenic ion pumping or flux at stomatal cells, and the 'variation potential' may therefore be a reflection of stomatal activity induced by the hydraulic signal.  相似文献   
914.
M. Luxová 《Planta》1986,169(4):465-470
A hydraulic constriction of the vessels occurs at the base of the primary roots of barley (Hordeum vulgare L.). The constriction and consequent hydraulic protection result from an extreme shortening of the vessel elements, leading to the accumulation of perforation plates with simple, broad-rimmed perforations which are smaller than those in normal-length vessel elements. It is compensated for by a local increase in the number of tracheary elements and an increase in their diameter. A similar trend of development was observed both at the base of other seminal roots and at the base of stem-borne adventitious roots. The rate at which compensation for the hydraulic constriction occurs could be of crucial importance for the axial resistance of water transport.  相似文献   
915.
916.
917.
The hydraulic architecture of balsam fir (Abies balsamea)   总被引:1,自引:0,他引:1  
Leaf-specific conductivities (LSCs – hydraulic conductivity per dry weight of supplied leaves). Huber values (transverse sapwood area per dry weight of supplied leaves), specific conductivity (hydraulic conductivity per transverse sapwood area) and tracheid diameters were measured throughout the trunk and crown of 20-year-old trees of Abies balsamca (L.) Mill. Measured specific conductivity was proportional to the radius to the fourth power of tracheids. LSCs, which indicate the relative water availability to different plant parts, are much higher in the trunk than in first order branches, and lowest in second order branches. The structural basis for this "hydraulic hierarchy" lies both in Huber values and in tracheid diameters. For similar diameter stem segments, there was no statistically significant difference for trunks versus branches in specific conductivity. However, in old parts of the tree, trunks are wider than supported branches and producer wider tracheids resulting in greater specific conductivities than in branches. In vigorous trees with strong apical control, Huber values were 12.0 times greater in the trunk than in similar diameter branch segments. In slow-growing trees with weak apical control, Huber values were 2.2 times greater in the trunk versus similar branch segments.  相似文献   
918.
919.
A number of studies have mapped QTL regulating porcine fatness and growth traits to the region of the major histocompatibility complex (MHC) on porcine chromosome 7 using various experimental crosses. The QTL results from crosses using the Chinese Meishan (MS) (slow growing and fat) are particularly interesting because the MS alleles have been found to be associated with increased growth rate and reduced backfat depth. We investigated these QTL further in a composite population derived previously over eight generations by intercrossing Meishan and the European Large White breeds. Genotype information from 32 markers in a 15cM target region was used in linkage and association analyses. A two‐step variance component analysis identified QTL for three growth‐related traits, explaining 19 ~ 24% of the phenotypic variance with a confidence interval of 4 cM in the target region. SNP association analyses found that ss181128966 and ss181128924 within the QTL interval were strongly associated with the growth traits. Only weak signals for an effect on backfat depth were found in the association and linkage analyses, possibly because of past directional selection in the composite population.  相似文献   
920.
The hydraulic residence time (or flushing rate of water) is a key variable for any aquatic ecosystem and is used in many types of models and calculations. Rather than being measured directly, the hydraulic residence time is usually inferred from estimates of watershed size, precipitation, and water yield. Such estimates can be problematic in any environment but are especially so in environments in which flat or complex topography makes delineations of mapped watershed boundaries difficult to discern. We added lithium bromide, (LiBr) to three small seepage lakes in the flat topography of the Upper Peninsula of Michigan to provide an independent estimate of the water residence time. Water residence time [volume/(outflow + evaporation)] averaged 921 ± 381 (SD) days among lakes and years and ranged from 400 to 1661 days at the extremes. This variation was not clearly related to year-to-year variation in precipitation, which was relatively constant [0.26 ± 0.06 (SD) cm day (d) 1]. The addition of the tracer (along with measurements of lake volume) enabled us to estimate, independent from other hydrologic information, the flow of water leaving the lakes in seepage plus surface outflow. This value, in conjunction with measurement of precipitation and evaporation, enabled us to calculate complete water budgets for these lakes. Among lakes and years, the groundwater input averaged 0.48 ± 0.36 cm d 1 and accounted for 57%± 19% of total water input. This estimate was larger by 150% than that obtained by multiplying precipitation (minus estimated evapotranspiration) times a mapped value of the watershed areas. Our analysis enables us to calculate the relative significance of groundwater and precipitation for solutes such as phosphorus, hydrogen ion, and dissolved organic carbon. Received 17 February 1998; accepted 19 February 1998.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号