首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10383篇
  免费   849篇
  国内免费   594篇
  11826篇
  2024年   24篇
  2023年   148篇
  2022年   176篇
  2021年   204篇
  2020年   255篇
  2019年   332篇
  2018年   314篇
  2017年   288篇
  2016年   288篇
  2015年   293篇
  2014年   448篇
  2013年   742篇
  2012年   388篇
  2011年   501篇
  2010年   387篇
  2009年   496篇
  2008年   545篇
  2007年   558篇
  2006年   605篇
  2005年   500篇
  2004年   440篇
  2003年   433篇
  2002年   402篇
  2001年   320篇
  2000年   261篇
  1999年   256篇
  1998年   239篇
  1997年   250篇
  1996年   171篇
  1995年   201篇
  1994年   166篇
  1993年   139篇
  1992年   131篇
  1991年   106篇
  1990年   96篇
  1989年   91篇
  1988年   72篇
  1987年   57篇
  1986年   55篇
  1985年   88篇
  1984年   99篇
  1983年   67篇
  1982年   66篇
  1981年   44篇
  1980年   21篇
  1979年   21篇
  1978年   11篇
  1977年   11篇
  1976年   7篇
  1974年   6篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
61.
The silkworm Bombyx mori L., representing an important economic insect and one of the best models for studying insect immunity, possesses an efficient and sophisticated innate immune system against invasive microorganisms. The innate immune system basically includes humoural immunity and cellular immunity. The humoural immunity, which functions via molecules including humoural factors, lysozymes, phenoloxidase, hemolin, lectins and, in particular, antimicrobial peptides, plays a central role in eliminating the invading pathogens. The cellular immunity is primarily carried out and mediated by plasmatocytes and granular cells of haemocytes in the haemolymph, usually followed by melanization. Additionally, apoptosis, a primary viral defence for insects lacking adaptive immunity, comprises an important part of the silkworm immune system. Currently, there is still the lack of a comprehensive and systematic understanding of the molecular mechanisms of silkworm immunity. We review the latest research progress on silkworm immune mechanisms, including phenoloxidase‐dependent melanization and apoptosis, which is conducive to improving our understanding of the silkworm immune mechanism, clarifying the relationship of various immune mechanisms, and also providing a theoretical basis and reference for the future research of insect immunity.  相似文献   
62.
Animals have evolved many ways to enhance their own reproductive success. One bizarre sexual ritual is the “love” dart shooting of helicid snails, which has courted many theories regarding its precise function. Acting as a hypodermic needle, the dart transfers an allohormone that increases paternity success. Its precise physiological mechanism of action within the recipient snail is to close off the entrance to the sperm digestion organ via a contraction of the copulatory canal, thereby delaying the digestion of most donated sperm. In this study, we used the common garden snail Cornu aspersum to identify the allohormone that is responsible for this physiological change in the female system of this simultaneous hermaphrodite. The love dart allohormone (LDA) was isolated from extracts derived from mucous glands that coat the dart before it is stabbed through the partner''s body wall. We isolated LDA from extracts using bioassay-guided contractility measurement of the copulatory canal. LDA is encoded within a 235-amino acid precursor protein containing multiple cleavage sites that, when cleaved, releases multiple bioactive peptides. Synthetic LDA also stimulated copulatory canal contractility. Combined with our finding that the protein amino acid sequence resembles previously described molluscan buccalin precursors, this indicates that LDA is partially conserved in helicid snails and less in other molluscan species. In summary, our study provides the full identification of an allohormone that is hypodermically injected via a love dart. More importantly, our findings have important consequences for understanding reproductive biology and the evolution of alternative reproductive strategies.  相似文献   
63.
Backbone dynamics and conformational properties of drug peptide salmon calcitonin have been studied in aqueous solution using nuclear magnetic resonance (NMR). Although salmon calcitonin (sCT) is largely unfolded in solution (as has been reported in several circular dichroism studies), the secondary Hα chemical shifts and three bond HN–Hα coupling constants indicated that most of the residues of the peptide are populating the α‐helical region of the Ramachandran (?, ψ) map. Further, the peptide in solution has been found to exhibit multiple conformational states exchanging slowly on the NMR timescale (102–103 s?1), inferred by the multiple chemical shift assignments in the region Leu4–Leu12 and around Pro23 (for residues Gln20–Tyr22 and Arg24). Possibly, these slowly exchanging multiple conformational states might inhibit symmetric self‐association of the peptide and, in part, may account for its reduced aggregation propensity compared with human calcitonin (which lacks this property). The 15N NMR‐relaxation data revealed (i) the presence of slow (microsecond‐to‐millisecond) timescale dynamics in the N‐terminal region (Cys1–Ser5) and core residues His17 and Asn26 and (ii) the presence of high frequency (nanosecond‐to‐picosecond) motions in the C‐terminal arm. Put together, the various results suggested that (i) the flexible C‐terminal of sCT (from Thr25–Thr31) is involved in identification of specific target receptors, (ii) whereas the N‐terminal of sCT (from Cys1–Gln20) in solution – exhibiting significant amount of conformational plasticity and strong bias towards biologically active α‐helical structure – facilitates favorable conformational adaptations while interacting with the intermembrane domains of these target receptors. Thus, we believe that the structural and dynamics features of sCT presented here will be useful guiding attributes for the rational design of biologically active sCT analogs. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   
64.
One of the most vexing problems facing structural genomics efforts and the biotechnology enterprise in general is the inability to efficiently produce functional proteins due to poor folding and insolubility. Additionally, protein misfolding and aggregation has been linked to a number of human diseases, such as Alzheimer's. Thus, a robust cellular assay that allows for direct monitoring, manipulation, and improvement of protein folding could have a profound impact. We report the development and characterization of a genetic selection for protein folding and solubility in living bacterial cells. The basis for this assay is the observation that protein transport through the bacterial twin-arginine translocation (Tat) pathway depends on correct folding of the protein prior to transport. In this system, a test protein is expressed as a tripartite fusion between an N-terminal Tat signal peptide and a C-terminal TEM1 beta-lactamase reporter protein. We demonstrate that survival of Escherichia coli cells on selective medium expressing a Tat-targeted test protein/beta-lactamase fusion correlates with the solubility of the test protein. Using this assay, we isolated solubility-enhanced variants of the Alzheimer's Abeta42 peptide from a large combinatorial library of Abeta42 sequences, thereby confirming that our assay is a highly effective selection tool for soluble proteins. By allowing the bacterial Tat pathway to exert folding quality control on expressed target protein sequences, we have generated a powerful tool for monitoring protein folding and solubility in living cells, for molecular engineering of solubility-enhanced proteins or for the isolation of factors and/or cellular conditions that stabilize aggregation-prone proteins.  相似文献   
65.
Development of effective resuscitation agents for blood-loss replacement in trauma or surgery is extremely important despite substantial improvements in screening methods of blood from human donors. This paper reports the design and synthesis of peptides that mimic the natural environment of the heme group in myoglobin (Mb) and in the - and -subunits of human adult hemoglobin (Hb). The designs were based on the fact that the heme group in the aforementioned proteins is sandwiched between helices E and F. Fifteen test peptides and six control peptides were synthesized, and their ability to form stable complexes with heme was investigated. It was found that none of the control peptides or proteins was able to bind heme. However, each of the peptides that were designed to mimic the E--F helices, and even shorter designs, which removed from this region residues that do not contribute to contacts with the heme group, were each able to bind one mole of heme per mole of peptide forming peptide–heme complexes that were stable to manipulation and behaved as single molecular species. Oxygen binding measurements on the reduced peptide–heme complexes showed that these compounds bind oxygen and give visible spectra that were typical of oxygenated heme-proteins. In oxygen binding measurements done under different partial pressures of oxygen, the heme–peptide complexes gave hyperbolic oxygen-saturation curves, but showed slight differences in their P50 values. The P50 values ranged from 3.8 mmHg for the heme–peptide B7 complex to 13.7 mmHg for the heme–peptide D13 complex (under the same conditions, P50 values for Hb and Mb were 34.0 and 5.5 mmHg, respectively). It is concluded that peptide constructs designed to mimic the heme-binding regions of Mb or the Hb subunits were able to form coordinate 1:1 complexes with heme, and these complexes bind oxygen in a manner expected for single subunit heme proteins.  相似文献   
66.
Spaak  Piet  Keller  Barbara 《Hydrobiologia》2004,526(1):15-21
Many polluted lakes in Europe are being restored and phosphorus concentrations have dropped dramatically in these lakes. We studied the genetic structure of Daphnia galeata over the past 30 years in Lake Greifensee, Switzerland, a period during which the phosphorus concentration in the lake reduced dramatically. Distinct genotypes of D. galeata were hatched from diapausing eggs extracted from six different time horizons in dated sediments. We compared juvenile growth, size and egg production of D. galeata reared on high-P and low-P algae to investigate whether Daphnia have evolved to grow better on phosphorus-limited algae. Our results indicate that life histories of D. galeata differed significantly between both food types. We also found significant clone effects for size and egg number. But we found no significant interaction between the depth from which the clones were selected and food quality. This means that we found no evidence for adaptive micro-evolution in response to P reduction in the lake. We discuss our results in relation to other studies that found evidence for adaptive micro-evolution in comparable time frames.  相似文献   
67.
68.
目的:探讨利用自裂解多肽2A构建的多顺反子载体能否在牛耳皮肤成纤维细胞中实现多基因的有效表达。方法:利用来自一点褐翅蛾病毒(TaV)的2A元件(T2A)将GFP和Neo基因连接到同一载体中,构建pCMV-GFP-T2A-Neo质粒,将其转染牛耳皮肤成纤维细胞,以FACS检测GFP基因的表达,RT-qPCR检测GFP、T2A和Neo的表达。结果:由T2A连接的GFP和Neo基因在mRNA水平上都有显著表达,且表达水平相当。结论:以T2A连接的基因在转入细胞后能正常翻译和表达,显示T2A在牛耳皮肤成纤维细胞中具有自裂解功能,可作为一种构建多顺反子载体的有效工具用于牛耳皮肤成纤维细胞的基因转移,为其将来在转基因牛研制中的应用奠定了基础。  相似文献   
69.
Corneal sensory and sympathetic nerves exert opposing actions on corneal mitogenesis and wound healing. The mechanisms by which these nerves exert their actions are unknown; however, the release of axonally transported neuropeptides has been postulated. In the present study, we investigated changes in innervation densities of calcitonin gene-related peptide (CGRP-) and tyrosine hydroxylase (TH-)immunoreactive (IR) nerves of the rat cornea following neonatal capsaicin administration, and the relationships between these changes and the development of neuroparalytic keratitis. Newborn rats were injected with capsaicin on each of the first 3 days of life. Forty-eight hours after the last injection, corneal CGRP immunostaining had totally disappeared from the cornea, whereas TH immunostaining was relatively unaffected. Over the next several weeks, a dramatic reinnervation of the cornea took place. By 6–8 weeks both the CGRP-and TH-IR corneal innervation density in the capsaicin-treated animals exceeded that of age-matched control or normal animals; that is, the corneas had become “hyper-reinnervated”. The pattern of innervation that returned was grossly abnormal and was characterized by the presence of a bizarre subepithelial plexus of fine stromal sprouts; an abundance of myelinated axons; and complex, atypical, epithelial leash morphologies. Retrograde transport of wheatgerm agglutinin conjugated to horseradish peroxidase (WGA:HRP) from the central cornea in control and capsaicin-treated adult animals labeled an average of 143 and 47 trigeminal ganglion cells, respectively (with mean diameters of 25.7 × 0.49 μm and 34.3 × 0.72 μm), suggesting a 67% decrease in corneal afferent neurons in the capsaicin-treated animals. Transection of the ophthalmomaxillary nerve in adult capsaicin-treated animals completely eliminated corneal CGRP-IR staining, and extirpation of the superior cervical ganglion resulted in the loss of 70–80% of corneal TH-IR nerves, thus demonstrating the sensory and predominantly sympathetic origins, respectively, of these fiber populations. Chronic keratitis and neovascularization developed in the capsaicin-treated animals by approximately 3 weeks of age, achieved a maximum intensity between 4 and 6 weeks, and showed some gradual improvement thereafter. However, the keratitis never completely disappeared, even after 13 months. In conclusion, these data show that corneal sensory (CGRP-IR) and sympathetic (TH-IR) nerve fibers undergo extensive sprouting following partial corneal sensory denervation with the neurotoxin capsaicin. However, the resultant “hyper-reinnervation” is morphologically abnormal and, for reasons unknown, functionally incapable of preventing or totally reversing the keratitis.  相似文献   
70.
目的研究一种小分子多肽─APP5肽的模拟物P165对体外培养的大鼠胚胎海马神经干细胞(neuralstem cells,NSCs)增殖和分化的影响,以期能找到一种可代替神经营养因子的小分子物质,能够促进NSCs的增殖或分化,为将来的临床应用提供理论依据。方法(1)原代培养SD大鼠胚胎脑海马NSCs;(2)利用5-溴脱氧尿嘧啶核苷(BrdU)和神经元、星型胶质细胞、少突胶质细胞的特异性标记物微管相关蛋白2(MAP2)、胶质纤维酸性蛋白(GFAP)、2,3-环核苷酸-3磷酸二酯酶(CNPase)对培养的NSCs进行鉴定;(3)将培养的NSCs分为对照组、血清组、APP5肽反序列组和P165组,观察各组细胞形态的变化;(4)将培养的NSCs分为对照组、APP5肽反序列组和P165组,利用细胞计数,测定干细胞克隆形成率、干细胞克隆形成大小的方法分析P165对海马NSCs增殖的影响。结果(1)海马神经干细胞呈神经球聚集生长,BrdU染色阳性;加入血清后神经球周围有细胞呈放射状向四周生长,并带有突起。染色呈MAP2、GFAP或CNPase阳性;(2)海马NSCs加入P165及其反序列后细胞形态上与对照组相比没有明显改变;(3)与对照组相比,加P165后海马NSCs数量明显增加,克隆形成率和克隆形成的直径均有明显的增加,并有统计学差异。结论P165能够促进海马NSCs的增殖,但并不促进其分化。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号