全文获取类型
收费全文 | 3830篇 |
免费 | 404篇 |
国内免费 | 366篇 |
专业分类
4600篇 |
出版年
2024年 | 14篇 |
2023年 | 61篇 |
2022年 | 82篇 |
2021年 | 100篇 |
2020年 | 134篇 |
2019年 | 155篇 |
2018年 | 128篇 |
2017年 | 150篇 |
2016年 | 144篇 |
2015年 | 146篇 |
2014年 | 174篇 |
2013年 | 220篇 |
2012年 | 149篇 |
2011年 | 160篇 |
2010年 | 130篇 |
2009年 | 161篇 |
2008年 | 171篇 |
2007年 | 186篇 |
2006年 | 181篇 |
2005年 | 200篇 |
2004年 | 169篇 |
2003年 | 162篇 |
2002年 | 153篇 |
2001年 | 149篇 |
2000年 | 125篇 |
1999年 | 103篇 |
1998年 | 95篇 |
1997年 | 93篇 |
1996年 | 75篇 |
1995年 | 71篇 |
1994年 | 64篇 |
1993年 | 66篇 |
1992年 | 40篇 |
1991年 | 52篇 |
1990年 | 30篇 |
1989年 | 29篇 |
1988年 | 33篇 |
1987年 | 23篇 |
1986年 | 31篇 |
1985年 | 42篇 |
1984年 | 31篇 |
1983年 | 18篇 |
1982年 | 23篇 |
1981年 | 31篇 |
1980年 | 12篇 |
1979年 | 11篇 |
1978年 | 6篇 |
1977年 | 5篇 |
1976年 | 6篇 |
1975年 | 3篇 |
排序方式: 共有4600条查询结果,搜索用时 15 毫秒
41.
Abdel-Mottaleb Y Clynen E Jalali A Bosmans F Vatanpour H Schoofs L Tytgat J 《FEBS letters》2006,580(26):6254-6258
The very first member of K(+) channels toxins from the venom of the Iranian scorpion Odonthobuthus doriae (OdK1) was purified, sequenced and characterized physiologically. OdK1 has 29 amino acids, six conserved cysteines and a pI value of 4.95. Based on multiple sequence alignments, OdK1 was classified as alpha-KTx 8.5. The pharmacological effects of OdK1 were studied on six different cloned K(+) channels (vertebrate Kv1.1-Kv1.5 and Shaker IR) expressed in Xenopus laevis oocytes. Interestingly, OdK1 selectively inhibited the currents through Kv1.2 channels with an IC50 value of 183+/-3 nM but did not affect any of the other channels. 相似文献
42.
Stephen K. Burley Helen M. Berman Wah Chiu Wei Dai Justin W. Flatt Brian P. Hudson Jason T. Kaelber Sagar D. Khare Arkadiusz W. Kulczyk Catherine L. Lawson Grigore D. Pintilie Andrej Sali Brinda Vallat John D. Westbrook Jasmine Y. Young Christine Zardecki 《Biophysical reviews》2022,14(6):1281
As a discipline, structural biology has been transformed by the three-dimensional electron microscopy (3DEM) “Resolution Revolution” made possible by convergence of robust cryo-preservation of vitrified biological materials, sample handling systems, and measurement stages operating a liquid nitrogen temperature, improvements in electron optics that preserve phase information at the atomic level, direct electron detectors (DEDs), high-speed computing with graphics processing units, and rapid advances in data acquisition and processing software. 3DEM structure information (atomic coordinates and related metadata) are archived in the open-access Protein Data Bank (PDB), which currently holds more than 11,000 3DEM structures of proteins and nucleic acids, and their complexes with one another and small-molecule ligands (~ 6% of the archive). Underlying experimental data (3DEM density maps and related metadata) are stored in the Electron Microscopy Data Bank (EMDB), which currently holds more than 21,000 3DEM density maps. After describing the history of the PDB and the Worldwide Protein Data Bank (wwPDB) partnership, which jointly manages both the PDB and EMDB archives, this review examines the origins of the resolution revolution and analyzes its impact on structural biology viewed through the lens of PDB holdings. Six areas of focus exemplifying the impact of 3DEM across the biosciences are discussed in detail (icosahedral viruses, ribosomes, integral membrane proteins, SARS-CoV-2 spike proteins, cryogenic electron tomography, and integrative structure determination combining 3DEM with complementary biophysical measurement techniques), followed by a review of 3DEM structure validation by the wwPDB that underscores the importance of community engagement. 相似文献
43.
The F5 and FM2 chromosome races of the Sceloporus grammicus complex form a hybrid zone in the Mexican state of Hidalgo. Previous studies of this zone have assessed genetic structure by averaging estimates of shape and width across three diagnostic chromosome markers. This approach is likely to mask subtle differences in cline shape among loci (e.g. selected vs. neutral), and obscure any displacement of cline centres (if present). Here we use maximum likelihood methods to construct the best fitting individual clines for three chromosomal markers, and also add two new markers; the mitochondrial DNA (mtDNA) locus, and the nuclear ribosomal DNA (rDNA) repeat. For each locus, hybrid zone models were fitted by cline shape and width, and the position and number of segments describing the centre of the zone. Pairwise comparisons between all clines revealed concordance between chromosomes 2 and 6, but significant discordance in cline structure among all other paired combinations. The concordance of chromosomes 2 and 6 suggests that these clines are maintained by genome-wide forces. The discordance of the chromosome 1 cline suggests an influence of asymmetric introgression, while the mtDNA cline is probably influenced by selection and drift. The rDNA locus reveals a pattern best explained by either extreme asymmetric introgression or gene conversion. The structure of zone indicates that genome-wide processes and locus specific selective forces as well as drift, are operating to different degrees on different loci. The locus-by-locus approach used here permits a finer discrimination among possible mechanisms responsible for the maintenance of the individual clines. 相似文献
44.
Eugenol specialty chemical production in transgenic poplar (Populus tremula × P. alba) field trials 下载免费PDF全文
Joaquim V. Marques P. Pawan Chakravarthy Syed G. A. Moinuddin Randi Luchterhand Barri Herman Laurence B. Davin Norman G. Lewis 《Plant biotechnology journal》2017,15(8):970-981
A foundational study assessed effects of biochemical pathway introduction into poplar to produce eugenol, chavicol, p‐anol, isoeugenol and their sequestered storage products, from potentially available substrates, coniferyl and p‐coumaryl alcohols. At the onset, it was unknown whether significant carbon flux to monolignols vs. other phenylpropanoid (acetate) pathway metabolites would be kinetically favoured. Various transgenic poplar lines generated eugenol and chavicol glucosides in ca. 0.45% (~0.35 and ~0.1%, respectively) of dry weight foliage tissue in field trials, as well as their corresponding aglycones in trace amounts. There were only traces of any of these metabolites in branch tissues, even after ~4‐year field trials. Levels of bioproduct accumulation in foliage plateaued, even at the lowest introduced gene expression levels, suggesting limited monolignol substrate availability. Nevertheless, this level still allows foliage collection for platform chemical production, with the remaining (stem) biomass available for wood, pulp/paper and bioenergy product purposes. Several transformed lines displayed unexpected precocious flowering after 4‐year field trial growth. This necessitated terminating (felling) these particular plants, as USDA APHIS prohibits the possibility of their interacting (cross‐pollination, etc.) with wild‐type (native plant) lines. In future, additional biotechnological approaches can be employed (e.g. gene editing) to produce sterile plant lines, to avoid such complications. While increased gene expression did not increase target bioproduct accumulation, the exciting possibility now exists of significantly increasing their amounts (e.g. 10‐ to 40‐fold plus) in foliage and stems via systematic deployment of numerous ‘omics’, systems biology, synthetic biology and metabolic flux modelling approaches. 相似文献
45.
46.
Yadvinder Malhi Timothy R. Baker Oliver L. Phillips Samuel Almeida Esteban Alvarez Luzmilla Arroyo Jerome Chave Claudia I. Czimczik Anthony Di Fiore Niro Higuchi Timothy J. Killeen Susan G. Laurance William F. Laurance Simon L. Lewis Lina María Mercado Montoya Abel Monteagudo David A. Neill Percy Núez Vargas Sandra Patio Nigel C.A. Pitman Carlos Alberto Quesada Rafael Salomo Jos Natalino Macedo Silva Armando Torres Lezama Rodolfo Vsquez Martínez John Terborgh Barbara Vinceti Jon Lloyd 《Global Change Biology》2004,10(5):563-591
The net primary production of tropical forests and its partitioning between long‐lived carbon pools (wood) and shorter‐lived pools (leaves, fine roots) are of considerable importance in the global carbon cycle. However, these terms have only been studied at a handful of field sites, and with no consistent calculation methodology. Here we calculate above‐ground coarse wood carbon productivity for 104 forest plots in lowland New World humid tropical forests, using a consistent calculation methodology that incorporates corrections for spatial variations in tree‐size distributions and wood density, and for census interval length. Mean wood density is found to be lower in more productive forests. We estimate that above‐ground coarse wood productivity varies by more than a factor of three (between 1.5 and 5.5 Mg C ha?1 a?1) across the Neotropical plots, with a mean value of 3.1 Mg C ha?1 a?1. There appear to be no obvious relationships between wood productivity and rainfall, dry season length or sunshine, but there is some hint of increased productivity at lower temperatures. There is, however, also strong evidence for a positive relationship between wood productivity and soil fertility. Fertile soils tend to become more common towards the Andes and at slightly higher than average elevations, so the apparent temperature/productivity relationship is probably not a direct one. Coarse wood productivity accounts for only a fraction of overall tropical forest net primary productivity, but the available data indicate that it is approximately proportional to total above‐ground productivity. We speculate that the large variation in wood productivity is unlikely to directly imply an equivalent variation in gross primary production. Instead a shifting balance in carbon allocation between respiration, wood carbon and fine root production seems the more likely explanation. 相似文献
47.
Molly Schumer Gil G. Rosenthal Peter Andolfatto 《Evolution; international journal of organic evolution》2014,68(6):1553-1560
Hybridization has long been considered a process that prevents divergence between species. In contrast to this historical view, an increasing number of empirical studies claim to show evidence for hybrid speciation without a ploidy change. However, the importance of hybridization as a route to speciation is poorly understood, and many claims have been made with insufficient evidence that hybridization played a role in the speciation process. We propose criteria to determine the strength of evidence for homoploid hybrid speciation. Based on an evaluation of the literature using this framework, we conclude that although hybridization appears to be common, evidence for an important role of hybridization in homoploid speciation is more circumscribed. 相似文献
48.
Llla Fishman John H. Willis 《Evolution; international journal of organic evolution》2001,55(10):1932-1942
Abstract Both chromosomal rearrangements and negative interactions among loci (Dobzhansky‐Muller incompatibilities) have been advanced as the genetic mechanism underlying the sterility of interspecific hybrids. These alternatives invoke very different evolutionary histories during speciation and also predict different patterns of sterility in artificial hybrids. Chromosomal rearrangements require drift, inbreeding, or other special conditions for initial fixation and, because heterozygosity per se generates any problems with gamete formation, F1 hybrids will be most infertile. In contrast, Dobzhansky‐Muller incompatibilities may arise as byproducts of adaptive evolution and often affect the segregating F2 generation most severely. To distinguish the effects of these two mechanisms early in divergence, we investigated the quantitative genetics of hybrid sterility in a line cross between two members of the Mimulus guttatus species complex (M. guttatus and M. nasutus). Hybrids showed partial male and female sterility, and the patterns of infertility were not consistent with the action of chromosomal rearrangements alone. F2 and F1 hybrids exhibited equal decreases in pollen viability (> 40%) relative to the highly fertile parental lines. A large excess of completely pollen‐sterile F2 genotypes also pointed to the segregation of Dobzhansky‐Muller incompatibility factors affecting male fertility. Female fertility showed a pattern similarly consistent with epistatic interactions: F2 hybrids produced far fewer seeds per flower than F1 hybrids (88.0 ± 2.8 vs. 162.9 ± 8.5 SE, respectively) and either parental line, and many F2 genotypes were completely female sterile. Dobzhansky‐Muller interactions also resulted in the breakdown of several nonreproductive characters and appear to contribute to correlations between male and female fertility in the F2 generation. These results parallel and contrast with the genetics of postzygotic isolation in model animal systems and are a first step toward understanding the process of speciation in this well‐studied group of flowering plants. 相似文献
49.
Ecological speciation studies have more thoroughly addressed premating than postmating reproductive isolation. This study examines multiple postmating barriers between host forms of Neochlamisus bebbianae leaf beetles that specialize on Acer and Salix trees. We demonstrate cryptic isolation and reduced hybrid fitness via controlled matings of these host forms. These findings reveal host-associated postmating isolation, although a nonecological, 'intrinsic' basis for these patterns cannot be ruled out. Host preference and performance results among cross types further suggest sex-linked maternal effects on these traits, whereas family effects indicate their genetic basis and associated variation. Genes of major effect appear to influence these traits. Together with previous findings of premating isolation and adaptive differentiation in sympatry, our results meet many assumptions of 'speciation with gene flow' models. Here, such gene flow is likely asymmetric, with consequences for the dynamics of future ecological divergence and potential ecological speciation of these host forms. 相似文献
50.
Gilia achilleifolia is a putative diploid hybrid species. Hybrid origin was hypothesized based on traditional biosystematicevidence (i.e., morphological, cytological, and crossability data),which may be insufficient to establish genealogical history. Here,phylogenetic analysis of sequence data from the internal transcribedspacer (ITS) regions is used to examine the relationship between theputative hybrid species and its proposed parents. Isozyme variation isassayed to test for genetic additivity in the putative hybrid taxon andmorphological data are analyzed cladistically to evaluate the charactersthat led to the original hypothesis of hybrid origin. The ITS-basedgene tree placed G. achilleifolia in two divergent clades, eachsister to one of the putative parental lineages. Little isozymeadditivity was observed and G. achilleifolia possessed sixunique alleles among 42 alleles observed. However, ITS and isozymetrees differed in their placement of the two lineages of G.achilleifolia; both lineages are closer to a third putative parentin the isozyme tree. Also, G. achilleifolia is intermediate orpolymorphic for all nine morphological characteristics differentiatingthe parental species. Sorting of ancestral polymorphisms cannot easilyaccount for expression patterns of seven of these characters. In ourview, these results fail to distinguish between alternative hypothesesof ancient hybrid origin and divergent evolution, belying the difficultyof detecting ancient hybrids. 相似文献