首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   86篇
  免费   5篇
  91篇
  2023年   1篇
  2022年   3篇
  2021年   3篇
  2019年   4篇
  2018年   2篇
  2017年   2篇
  2015年   3篇
  2014年   5篇
  2013年   9篇
  2012年   1篇
  2011年   4篇
  2010年   2篇
  2009年   4篇
  2008年   5篇
  2007年   5篇
  2006年   5篇
  2005年   1篇
  2004年   7篇
  2003年   2篇
  2001年   4篇
  2000年   3篇
  1999年   3篇
  1998年   4篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1992年   1篇
  1991年   1篇
  1989年   1篇
  1978年   1篇
排序方式: 共有91条查询结果,搜索用时 0 毫秒
61.
Disentangling the factors underlying the diversification of geographically variable species with a wide geographical range is essential to understanding the initial stages and drivers of the speciation process. The Amazilia Hummingbird, Amazilis amazilia, is found along the Pacific coast from northern Ecuador down to the Nazca Valley of Peru, and is currently classified as six phenotypically differentiated subspecies. We aimed to resolve the evolutionary relationships of the six subspecies, to assess the geographical pattern and extent of evolutionary divergence, and to test for introgression using both a mtDNA marker and a genome‐by‐sequencing dataset from 86 individuals from across the species range. The consensus phylogenetic tree separated the six subspecies into three distinct clades, corresponding with the Ecuador lowlands (Aamazilia dumerilii), the Ecuador highlands (Aamazilia alticola and A. amazilia azuay), and the Peruvian coast (Aamazilia leucophoea, Aamazilia amazilia, and A. amazilia caeruleigularis). However, an unresolved mtDNA network suggests that the diversification of the subspecies was recent and rapid. We found evidence of gene flow among the subspecies Aamazilia dumerilii, Aamazilia alticola, and Aamazilia leucophoea, with strong genetic isolation of the subspecies Aamazilia azuay in the isolated Yunguilla Valley of Ecuador. Finally, environmental data from each subspecies’ capture locations were concordant with the three distinct clades. Overall, our results suggest that both expansions into new habitats and geographic isolation shaped the present‐day phylogeny and range of the Aamazilia subspecies, and that Aamazilia azuay may be genetically divergent enough to be considered a separate species.  相似文献   
62.
The ability of animals to remember the what, where and when of a unique past event is used as an animal equivalent to human episodic memory. We currently view episodic memory as reconstructive, with an event being remembered in the context in which it took place. Importantly, this means that the components of a what, where, when memory task should be dissociable (e.g. what would be remembered to a different degree than when). We tested this hypothesis by training hummingbirds to a memory task, where the location of a reward was specified according to colour (what), location (where), and order and time of day (when). Although hummingbirds remembered these three pieces of information together more often than expected, there was a hierarchy as to how they were remembered. When seemed to be the hardest to remember, while errors relating to what were more easily corrected. Furthermore, when appears to have been encoded as a combination of time of day and sequence information. As hummingbirds solved this task using reconstruction of different memory components (what, where and when), we suggest that similar deconstructive approaches may offer a useful way to compare episodic and episodic-like memories.  相似文献   
63.
Phenotypic matches between plants and their pollinators often are interpreted as examples of reciprocal selection and adaptation. For the two co‐occurring plant species, Heliconia bihai and H. caribaea in the Eastern Caribbean, we evaluated for five populations over 2 years the strength and direction of natural selection on corolla length and number of bracts per inflorescence. These plant traits correspond closely to the bill lengths and body masses of their primary pollinators, female or male purple‐throated carib hummingbirds (Eulampis jugularis). In H. bihai, directional selection for longer corollas was always significant with the exception of one population in 1 year, whereas selection on bract numbers was rare and found only in one population in 1 year. In contrast, significant directional selection for more bracts per inflorescence occurred in all three populations of the yellow morph and in two populations of the red morph of H. caribaea, whereas significant directional selection on corolla length occurred in only one population of the red morph and one population of the yellow morph. Selection for longer corollas in H. bihai may result from better mechanical fit, and hence pollination, by the long bills of female E. jugularis, their sole pollinator. In contrast, competition between males of E. jugularis for territories may drive selection for more bracts in H. caribaea. Competitive exclusion of female E. jugularis by territorial males also implicates pollinator competition as a possible ecological mechanism for trait diversification in these plants.  相似文献   
64.
Endotherms must warm ingested food to body temperature. Food warming costs may be especially high for nectar-feeding birds, which can ingest prodigious volumes. We formulated a mathematical model to predict the cost of warming nectar as a function of nectar temperature and sugar concentration. This model predicts that the cost of warming nectar should: (1) decrease as a power function of nectar concentration, and (2) increase linearly with the difference between body temperature and nectar temperature. We tested our model on rufous hummingbirds (Selasphorus rufus). A typical experiment consisted of feeding birds nectar of a given concentration at 39°C (equivalent to body temperature) and then at 4°C, and vice versa. We used the percentage change in metabolic rate between the two food temperatures to estimate the cost of warming nectar. The model's predictions were accurately met. When birds had to hover rather than perch during feeding bouts, estimated food-warming costs were only slightly lower. The cost of warming nectar to body temperature appears to be an important yet overlooked aspect of the energy budgets of nectar-feeding birds. Hummingbirds feeding on 5% sucrose solutions at 4oC have to increase their metabolic rate by an amount equivalent to that elicited by a 15°C drop in ambient temperature.Abbreviations AE assimilation efficiency - C nectar concentration - H' cost of warming food to body temperature - SDA specific dynamic action - Ta ambient temperature - Tb body temperature - Tn nectar temperatureCommunicated by: G. Heldmaier  相似文献   
65.
Biotic specialization holds information about the assembly, evolution, and stability of biological communities. Partner availabilities can play an important role in enabling species interactions, where uneven partner availabilities can bias estimates of biotic specialization when using phylogenetic diversity indices. It is therefore important to account for partner availability when characterizing biotic specialization using phylogenies. We developed an index, phylogenetic structure of specialization (PSS), that avoids bias from uneven partner availabilities by uncoupling the null models for interaction frequency and phylogenetic distance. We incorporate the deviation between observed and random interaction frequencies as weights into the calculation of partner phylogenetic α‐diversity. To calculate the PSS index, we then compare observed partner phylogenetic α‐diversity to a null distribution generated by randomizing phylogenetic distances among the same number of partners. PSS quantifies the phylogenetic structure (i.e., clustered, overdispersed, or random) of the partners of a focal species. We show with simulations that the PSS index is not correlated with network properties, which allows comparisons across multiple systems. We also implemented PSS on empirical networks of host–parasite, avian seed‐dispersal, lichenized fungi–cyanobacteria, and hummingbird pollination interactions. Across these systems, a large proportion of taxa interact with phylogenetically random partners according to PSS, sometimes to a larger extent than detected with an existing method that does not account for partner availability. We also found that many taxa interact with phylogenetically clustered partners, while taxa with overdispersed partners were rare. We argue that species with phylogenetically overdispersed partners have often been misinterpreted as generalists when they should be considered specialists. Our results highlight the important role of randomness in shaping interaction networks, even in highly intimate symbioses, and provide a much‐needed quantitative framework to assess the role that evolutionary history and symbiotic specialization play in shaping patterns of biodiversity. PSS is available as an R package at https://github.com/cjpardodelahoz/pss.  相似文献   
66.
A study of the anthocyanins in a representative sample (34 species from 14 genera) of Polemoniaceae has shown that the pigment type in the flowers is broadly correlated with pollination ecology. Thus, hummingbird pollinated species such as Ipomopsis aggregata generally contain pelargonidin sometimes with cyanidin, while bee and beefly pollinated species (e.g. Gilia latiflora) contain mainly delphinidin. On the other hand, lepidopteran species such as Leptodactylon californicum have cyanidin or mixtures of cyanidin with delphinidin. The above three anthocyanidins occur usually as the 3-glucoside, 3,5-diglucoside, 3-(p-coumarylglucoside) and 3-(p-coumarylglucoside)-5-glucoside, although other types are occasionally found. The distribution of glycosidic types and of acylation, unlike that of the anthocyanidins, is more closely correlated with systematic position than with pollinating vectors. In autogamous species where animal pollination is absent or unimportant, anthocyanin pigmentation in the flowers retains the complexity present in related animal-pollinated taxa. Anthocyanins were also identified in hummingbird pollinated plants from two related families and pelargonidin derivatives were detected. In Fouquieria splendens (Fouquieriaceae), the glycosidic pattern was different from that in Polemoniaceae in being 3-galactoside. In Penstemon (Scrophulariaceae) a study of flower anthocyanins was consistent with Straw's hypothesis that the wasp-pollinated P. spectabilis originated by hybridization between the hummingbird-pollinated P. centranthifolius and the bee-pollinated P. grinnellii.  相似文献   
67.
The reproductive biology of Zeyheria montana was studied through field observations of flower visitors and floral events, controlled manual pollinations, and observations of pollen tube growth and ovule penetration by fluorescence microscopy. Analysis of secretory areas of the nectar chamber was made by flower dissections and histology of serial sections. The flower lasted 6–8 days, but pollen exposure and stigma receptivity occurred only up to the end of the first and second days, respectively. Pollination was effected by several species of hummingbirds, especially Colibri serrirostris. The flowers present a rudimentary, non-functional disc, and secretion of nectar is performed by corolla-borne glandular trichomes. Only hand cross-pollinated and natural-pollinated flowers set fruits. Artificially self-pollinated and non-pollinated flowers dried off after anthesis without presenting any swelling of the ovary. Almost all the ovules in selfed and crossed pistils were penetrated 96 h after pollination. However, a delay in ovule penetration in self-pollinated pistils was verified, which indicates the occurrence of late-acting self-incompatibility.We are grateful to Fundo de Apoio ao Ensino e à Pesquisa (UNICAMP) for financial support, and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for the fellowship granted to the first author (this work is part of a Ph.D. thesis presented to UNICAMP, Campinas, SP, Brazil).  相似文献   
68.
BACKGROUND AND AIMS: Hummingbird flower mites feed and reproduce in flowers of host plants pollinated by hummingbirds, and use the nostrils and bill of the hummingbird to move from plant to plant. These mites compete with the pollinator for the nectar produced by flowers. An investigation was made of the relationship between the pattern of nectar production and the effects of hummingbird flower mites in the flowers of two sympatric species of Heliconia (Heliconiaceae). METHODS: Nectar production was sampled by carrying out two experiments: 2-hour intervals and accumulated nectar. Flowers with and without mites were used in both experiments. KEY RESULTS: Exclusion of mites increased nectar production, especially in accumulated daily production (a maximum of 49 % more nectar). Both Heliconia species had the same pattern of nectar production: a high concentration in the morning, which was progressively reduced as the day passed. This pattern of nectar production coincides with the behaviour of the pollinator, which makes more frequent visits in the morning, as observed in a previous study. CONCLUSIONS: The results suggest that the impact of mites on nectar availability of Heliconia is more important with regard to total volume of nectar produced irrespective of flower longevity. A high variation among individuals in nectar produced in the populations was also observed. Hummingbird flower mites strongly affect availability of nectar for hummingbirds.  相似文献   
69.
70.
A diverse array of birds apparently make mechanical sounds (called sonations) with their feathers. Few studies have established that these sounds are non-vocal, and the mechanics of how these sounds are produced remains poorly studied. The loud, high-frequency chirp emitted by a male Anna's hummingbird (Calypte anna) during his display dive is a debated example. Production of the sound was originally attributed to the tail, but a more recent study argued that the sound is vocal. Here, we use high-speed video of diving birds, experimental manipulations on wild birds and laboratory experiments on individual feathers to show that the dive sound is made by tail feathers. High-speed video shows that fluttering of the trailing vane of the outermost tail feathers produces the sound. The mechanism is not a whistle, and we propose a flag model to explain the feather's fluttering and accompanying sound. The flag hypothesis predicts that subtle changes in feather shape will tune the frequency of sound produced by feathers. Many kinds of birds are reported to create aerodynamic sounds with their wings or tail, and this model may explain a wide diversity of non-vocal sounds produced by birds.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号