首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   716篇
  免费   47篇
  国内免费   84篇
  2024年   3篇
  2023年   9篇
  2022年   27篇
  2021年   15篇
  2020年   30篇
  2019年   37篇
  2018年   28篇
  2017年   19篇
  2016年   28篇
  2015年   23篇
  2014年   28篇
  2013年   73篇
  2012年   23篇
  2011年   29篇
  2010年   23篇
  2009年   32篇
  2008年   18篇
  2007年   35篇
  2006年   29篇
  2005年   40篇
  2004年   32篇
  2003年   20篇
  2002年   21篇
  2001年   27篇
  2000年   16篇
  1999年   13篇
  1998年   14篇
  1997年   13篇
  1996年   10篇
  1995年   16篇
  1994年   7篇
  1993年   17篇
  1992年   13篇
  1991年   5篇
  1990年   6篇
  1989年   5篇
  1988年   4篇
  1987年   3篇
  1986年   4篇
  1985年   6篇
  1984年   10篇
  1983年   3篇
  1982年   2篇
  1980年   6篇
  1979年   4篇
  1978年   2篇
  1977年   4篇
  1976年   5篇
  1974年   6篇
  1972年   1篇
排序方式: 共有847条查询结果,搜索用时 15 毫秒
41.
New phenolic mono and bis Mannich bases incorporating benzimidazole, such as 2-(aminomethyl)-4-(1H-benzimidazol-2-yl)phenol and 2,6-bis(aminomethyl)-4-(1H-benzimidazol-2-yl)phenol were synthesized starting from 4-(1H-benzimidazol-2-yl)phenol. Amines used for the synthesis included dimethylamine, pyrrolidine, piperidine, N-methylpiperazine and morpholine. The CA inhibitory properties of these compounds were tested on the human carbonic anhydrase (CA, EC 4.2.1.1) isoforms hCA I and hCA II. These new compounds, as many phenols show moderate CA inhibitory properties.  相似文献   
42.
43.
Biodegradation of phenol has been investigated using a bacterial consortium consisting of two bacterial isolates; one of them used for the first time in phenol biodegradation. This consortium was isolated from activated sludge and identified as Providencia stuartii PL4 and Pseudomonas aeruginosa PDM (accession numbers KY848366 and MF445102, respectively). The degradation of phenol by this consortium was optimal at pH 7 with using 1500?mg?l?1 ammonium chloride as a nitrogen source. Interestingly, after optimizing the biodegradation conditions, this consortium was able to degrade phenol completely up to 1500?mg?l?1 within 58?h. The immobilization of this consortium on various supporting materials indicated that polyvinyl alcohol (PVA)-alginate beads and polyurethane foam (PUF) were more suitable for biodegradation process. The freely suspended cells could degrade only 6% (150?mg?l?1) of 2500?mg?l?1 phenol, whereas, the immobilized PVA-alginate beads and the immobilized PUF degraded this concentration completely within 120?h of incubation with degradation rates (q) 0.4839 and 0.5368 (1/h) respectively. Thus, the immobilized consortium of P. stuartii PL4 and P. aeruginosa PDM can be considered very promising in the treatment of effluents containing phenol.  相似文献   
44.
该研究在建立贵州省野生苦苣苔科植物名录和地理分布数据库的基础上,对其物种多样性及地理分布格局进行研究。通过文献资料结合实地调查,从物种组成、特有性、水平分布、垂直分布和相似性等方面进行分析,并采用筛除算法确定贵州苦苣苔科植物分布的热点地区。结果表明:(1)贵州省苦苣苔科植物共计2族8亚族28属153种(含种下等级),分布在75个县级行政区,有128/45个中国/贵州特有种,垂直分布以900~1300 m海拔段最为丰富。(2)通过计算省级相似性系数,发现贵州与广西的相似程度最高,最后筛选得到10个热点县,共代表了75%的苦苣苔科植物。(3)贵州省为典型的喀斯特高原山地,苦苣苔科植物种类丰富,尤其是广义马铃苣苔属、广义报春苣苔属、广义石山苣苔属和蛛毛苣苔属等,有着较高的物种多样性和区域特有性。该研究可以为贵州省苦苣苔科植物资源保护和持续利用提供理论参考。  相似文献   
45.
Microbial biosynthesis has been extensively adapted for the production of commodity chemicals using renewable feedstocks. This study integrated metabolite biosensors into rationally designed microbial cocultures to achieve high-efficiency bioproduction of phenol from simple carbon substrate glucose. Specifically, two sets of E. coli–E. coli cocultures were first constructed for accommodation of two independent phenol biosynthesis pathways via 4-hydroxybenzoate (4HB) and tyrosine (TYR), respectively. Biosensor-assisted microbial cell selection mechanisms were subsequently incorporated into the coculture systems to address the insufficient pathway intermediate provision that limited the overall bioproduction. For the 4HB- and TYR-dependent pathways, this approach improved the phenol production by 2.3- and 3.9-fold, respectively, compared to the monoculture controls. Notably, the use of biosensor-assisted cell selection strategy in monocultures resulted in reduced phenol production, highlighting the advantage of coculture engineering for coupling with biosensing. After stepwise optimization, the phenol bioproduction yield of the engineered coculture's reached 0.057 g/g glucose. Furthermore, the coculture biosynthesis was successfully scaled up at both shake flask and bioreactor levels. Overall, the findings of this study demonstrate the outstanding potential of coupling biosensing and modular coculture engineering for advancing microbial biosynthesis of valuable molecules from renewable carbon substrates.  相似文献   
46.
Protein kinase monopolar spindle 1 plays an important role in spindle assembly checkpoint at the onset of mitosis. Over expression of MPS1 correlated with a wide range of human tumors makes it an attractive target for finding an effective and specific inhibitor. In this work, we performed molecular dynamics simulations of protein MPS1 itself as well as protein bound systems with the inhibitor and natural substrate based on crystal structures. The reported orally bioavailable 1 h-pyrrolo [3,2-c] pyridine inhibitors of MPS1 maintained stable binding in the catalytic site, while natural substrate ATP could not stay. Comparative study of stability and flexibility of three systems reveals position shifting of β-sheet region within the catalytic site, which indicates inhibition mechanism was through stabilizing the β-sheet region. Binding free energies calculated with MM-GB/PBSA method shows different binding affinity for inhibitor and ATP. Finally, interactions between protein and inhibitor during molecular dynamic simulations were measured and counted. Residue Gly605 and Leu654 were suggested as important hot spots for stable binding of inhibitor by molecular dynamic simulation. Our results reveal an important position shifting within catalytic site for non-inhibited proteins. Together with hot spots found by molecular dynamic simulation, the results provide important information of inhibition mechanism and will be referenced for designing novel inhibitors.  相似文献   
47.
It is an important goal of computational biology to correctly predict the association state of a protein based on its amino acid sequence and the structures of known homologues. We have pursued this goal on the example of anthranilate phosphoribosyltransferase (AnPRT), an enzyme that is involved in the biosynthesis of the amino acid tryptophan. Firstly, known crystal structures of naturally occurring homodimeric AnPRTs were analyzed using the Protein Interfaces, Surfaces, and Assemblies (PISA) service of the European Bioinformatics Institute (EBI). This led to the identification of two hydrophobic “hot spot” amino acids in the protein-protein interface that were predicted to be essential for self-association. Next, in a comprehensive multiple sequence alignment (MSA), naturally occurring AnPRT variants with hydrophilic or charged amino acids in place of hydrophobic residues in the two hot spot positions were identified. Representative variants were characterized in terms of thermal stability, enzymatic activity, and quaternary structure. We found that AnPRT variants with charged residues in both hot spot positions exist exclusively as monomers in solution. Variants with hydrophilic amino acids in one hot spot position occur in both forms, monomer and dimer. The results of the present study provide a detailed characterization of the determinants of the AnPRT monomer-dimer equilibrium and show that analysis of hot spots in combination with MSAs can be a valuable tool in prediction of protein quaternary structures.  相似文献   
48.
为分析高温胁迫下新菠萝灰粉蚧Dysmicoccus neobrevipes Beardsley不同地理种群保护酶活性的差异,阐明该粉蚧对高温适应性的生理响应。本研究以室内26℃处理为对照测定了高温胁迫下(35℃、38℃、41℃、44℃)新菠萝灰粉蚧4个不同地理(广西、广东、海南和云南)种群雌成虫过氧化物酶(POD)、酚氧化酶(PO)及谷胱甘肽-S-转移酶(GST)的活性。结果表明,在35~44℃高温胁迫下,新菠萝灰粉蚧不同地理种群雌成虫POD和GST活性均高于常温对照的,PO活性均低于常温对照的(除云南种群38℃处理外);在35~44℃高温胁迫下该粉蚧3种酶活性变化均具有随着处理温度的升高呈先升高后降低趋势。在常温26℃下,该粉蚧除了广西、广东种群POD活性显著高于海南、云南种群外,4个种群的PO、GST间的活性无显著差异。在38℃、41℃和44℃高温处理下广西、广东、云南种群间的POD活性无显著差异。在相同高温处理下,除广东种群38℃处理的GST活性显著低于其它种群的外,其它相同温度处理的不同种群间的GST活性无显著差异。说明新菠萝灰粉蚧广西、广东、云南种群的POD对38℃、41℃、...  相似文献   
49.
Kinetics of inactivation of horseradish peroxidase (HP) induced by low-frequency ultrasonic (US) treatment (27 kHz) with the specific power of 60 W/cm2 were studied in phosphate (pH 7.4) and acetate (pH 5.2) buffers within the temperature range of 36.0 to 50.0°C and characterized by effective first-order rate constants of US inactivation k in (us) in min–1. Values of k in (us) depend on the specific ultrasonic power within the range of 20-60 W/cm2, on the concentration of HP, and on pH and temperature of the solutions. The activation energy of US inactivation of HP is 9.4 kcal/mole. Scavengers of HO· radicals, mannitol and dimethylformamide, significantly inhibit the US inactivation of HP at 36.0°C, whereas micromolar concentrations of polydisulfide of gallic acid (poly(DSG)) and of poly(2-aminodisulfide-4-nitrophenol) (poly(ADSNP)) virtually completely suppress the US inactivation of peroxidase at the ultrasonic power of 60 W/cm2 on the sonication of the enzyme solutions for more than 1 h at pH 5.2. Various complexes of poly(DSG) with human serum albumin effectively protect HP against the US inactivation in phosphate buffer (pH 7.4). The findings unambiguously confirm a free radical mechanism of the US inactivation of HP in aqueous solutions. Polydisulfides of substituted phenols are very effective protectors of peroxidase against inactivation caused by US cavitation.  相似文献   
50.
Comamonas terrigena N3H is a gram-negative rod-shaped bacterium that was isolated from contaminated soil in Slovakia. This bacterium showed remarkable biodegradation properties. We investigated the expression and functioning of two catalase isozymes in this bacterium. The typical catalase could be induced by cadmium ions, whereas the catalase-peroxidase enzyme was constitutively expressed. Since C. terrigena lacks the key enzyme for complete degradation of phenols (phenolhydroxylase), we analysed the possible removal of phenol by the two catalases of this bacterium. Addition of phenol to the culture medium led to increased expression of the catalase-peroxidase. Applying oxidative stress prior to phenol administration markedly induced the expression of the typical catalase, irrespective of the nature of the added agent. Thus, the rate of phenol degradation is rather reduced under these conditions, while growth of the cells is not impaired. We concluded that phenol peroxidation in C. terrigena can be largely attributed to the action of a catalase-peroxidase. The potential application of this enzyme in the removal of phenol from the environment is discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号