首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1862篇
  免费   248篇
  国内免费   167篇
  2023年   24篇
  2022年   39篇
  2021年   64篇
  2020年   68篇
  2019年   99篇
  2018年   99篇
  2017年   81篇
  2016年   72篇
  2015年   85篇
  2014年   123篇
  2013年   129篇
  2012年   128篇
  2011年   130篇
  2010年   114篇
  2009年   82篇
  2008年   94篇
  2007年   92篇
  2006年   87篇
  2005年   80篇
  2004年   52篇
  2003年   58篇
  2002年   46篇
  2001年   49篇
  2000年   46篇
  1999年   24篇
  1998年   33篇
  1997年   19篇
  1996年   37篇
  1995年   15篇
  1994年   23篇
  1993年   12篇
  1992年   18篇
  1991年   19篇
  1990年   12篇
  1989年   13篇
  1988年   13篇
  1987年   14篇
  1986年   7篇
  1985年   11篇
  1984年   20篇
  1983年   3篇
  1982年   9篇
  1981年   6篇
  1980年   3篇
  1979年   4篇
  1978年   5篇
  1977年   4篇
  1976年   3篇
  1975年   3篇
  1973年   4篇
排序方式: 共有2277条查询结果,搜索用时 31 毫秒
221.
The indirect defences of plants are comprised of herbivore‐induced plant volatiles (HIPVs) that among other things attract the natural enemies of insects. However, the actual extent of the benefits of HIPV emissions in complex co‐evolved plant‐herbivore systems is only poorly understood. The observation that a few Quercus robur L. trees constantly tolerated (T‐oaks) infestation by a major pest of oaks (Tortrix viridana L.), compared with heavily defoliated trees (susceptible: S‐oaks), lead us to a combined biochemical and behavioural study. We used these evidently different phenotypes to analyse whether the resistance of T‐oaks to the herbivore was dependent on the amount and scent of HIPVs and/or differences in non‐volatile polyphenolic leaf constituents (as quercetin‐, kaempferol‐ and flavonol glycosides). In addition to non‐volatile metabolic differences, typically defensive HIPV emissions differed between S‐oaks and T‐oaks. Female moths were attracted by the blend of HIPVs from S‐oaks, showing significantly higher amounts of (E)‐4,8‐dimethyl‐1,3,7‐nonatriene (DMNT) and (E)‐β‐ocimene and avoid T‐oaks with relative high fraction of the sesquiterpenes α‐farnesene and germacrene D. Hence, the strategy of T‐oaks exhibiting directly herbivore‐repellent HIPV emissions instead of high emissions of predator‐attracting HIPVs of the S‐oaks appears to be the better mechanism for avoiding defoliation.  相似文献   
222.
223.
Guo G  Ge P  Ma C  Li X  Lv D  Wang S  Ma W  Yan Y 《Journal of Proteomics》2012,75(6):1867-1885
A comparative proteomic analysis was made of salt response in seedling roots of wheat cultivars Jing-411 (salt tolerant) and Chinese Spring (salt sensitive) subjected to a range of salt stress concentrations (0.5%, 1.5% and 2.5%) for 2 days. One hundred and ninety eight differentially expressed protein spots (DEPs) were located with at least two-fold differences in abundance on 2-DE maps, of which 144 were identified by MALDI-TOF-TOF MS. These proteins were involved primarily in carbon metabolism (31.9%), detoxification and defense (12.5%), chaperones (5.6%) and signal transduction (4.9%). Comparative analysis showed that 41 DEPs were salt responsive with significant expression changes in both varieties under salt stress, and 99 (52 in Jing-411 and 47 in Chinese Spring) were variety specific. Only 15 and 9 DEPs in Jing-411 and Chinese Spring, respectively, were up-regulated in abundance under all three salt concentrations. All dynamics of the DEPs were analyzed across all treatments. Some salt responsive DEPs, such as guanine nucleotide-binding protein subunit beta-like protein, RuBisCO large subunit-binding protein subunit alpha and pathogenesis related protein 10, were up-regulated significantly in Jing-411 under all salt concentrations, whereas they were down-regulated in salinity-stressed Chinese Spring.  相似文献   
224.
The rhizobia-legume symbiosis requires a coordinated molecular interaction between the symbionts, initiated by seed and root exudation of several compounds, mainly flavonoids, that trigger the expression of nodulation genes in the bacteria. Since the role of flavonoids seems to be broader than the induction of nodulation genes, we aimed at characterizing genistein-induced proteins of Bradyrhizobium japonicum CPAC 15 (= SEMIA 5079), used in commercial soybean inoculants in Brazil, and of two genetically related strains grown in vitro. Whole-cell proteins were extracted both from induced (1 μM genistein) and from non-induced cultures of the three strains, and separated by two-dimensional electrophoresis. Spot profiles were compared between the two conditions and selected spots were excised and identified by mass spectrometry. Forty-seven proteins were significantly induced by genistein, including several hypothetical proteins, the cytoplasmic flagellar component FliG, periplasmic ABC transporters, a protein related to biosynthesis of exopolysaccharides (ExoN), and proteins involved in redox-state maintenance. Noteworthy was the induction of the PhyR-σEcfG regulon, recently demonstrated to be involved in the symbiotic efficiency of, and general stress response in B. japonicum. Our results confirm that the role of flavonoids, such as genistein, can go far beyond the expression of nodulation-related proteins in B. japonicum.  相似文献   
225.
以1B/1R类K型不育系K3314A及其保持系3314B,非1B/1R类K型不育系732A及其保持系732B,YS温敏雄性不育小麦A3017为材料,提取不同温度处理下各时期小穗的总RNA进行反转录,对AY914051和AY660990两个目标基因进行半定量PCR和电泳分析,测定其在小麦中的表达变化趋势,以分析其与这几种不育系的育性相关关系,探讨这几种不育小麦败育的关键发育时期。结果表明,除AY914051基因在2种保持系3314B和732B中表达量变化不大之外,其它均有明显差异;2个目标基因与这几种雄性不育系的败育有关,但与育性相关程度不同,不育系两个目的基因的表达受温度变化影响程度明显大于保持系。由实验结果推测,1B/1R类K型不育系、非1B/1R类K型不育系和YS温敏雄性不育系的败育关键时期为单核期或单核期至二核期之间;温度差异可能会导致YS温敏雄性不育系的育性相关基因表达时期错位,错位后的表达差异积累可能最终导致其败育。  相似文献   
226.
1961-2010年中国春玉米潜在种植分布的年代际动态变化   总被引:2,自引:0,他引:2  
基于构建的中国春玉米种植分布-气候关系模型,对1961-2010年春玉米潜在种植分布年代际变化进行了分析.结果表明:春玉米潜在可种植面积呈增加趋势;气候最适宜种植面积波动式增加,近10年达5.3×105 km2;适宜种植面积明显扩大,近50年增加约8.2×105 km2,且呈东扩趋势;潜在种植北界呈波动式北移,最大北抬达1.4个纬度.表明,气候变化有利于中国扩大春玉米种植,但一些地区可能受水分条件的限制.  相似文献   
227.
硬毛地笋挥发性成分研究   总被引:1,自引:0,他引:1  
采用固相微萃取/气相色谱/质谱法对硬毛地笋地上部分挥发油成分进行分离和鉴定。首次从硬毛地笋地上部分中鉴定出了20个化合物,占总挥发性成分的98.68%。主要挥发性成分为石竹烯(30.87%)、(–)-α-人参烯(11.56%)、佛术烯(9.38%)、Z,Z,Z-1,5,9,9-四甲基-1,4,7,-环十一碳三烯(9.10%)、2-异丙基甲苯(5.65%)、大牛儿烯D(4.34%)、D-柠檬烯(3.95%)和γ-瑟林烯(3.79%)。  相似文献   
228.
Millions of years of coevolution between plants and pathogens can leave footprints on their genomes and genes involved on this interaction are expected to show patterns of positive selection in which novel, beneficial alleles are rapidly fixed within the population. Using information about upregulated genes in maize during Colletotrichum graminicola infection and resources available in the Phytozome database, we looked for evidence of positive selection in the Poaceae lineage, acting on protein coding sequences related with plant defense. We found six genes with evidence of positive selection and another eight with sites showing episodic selection. Some of them have already been described as evolving under positive selection, but others are reported here for the first time including genes encoding isocitrate lyase, dehydrogenases, a multidrug transporter, a protein containing a putative leucine-rich repeat and other proteins with unknown functions. Mapping positively selected residues onto the predicted 3-D structure of proteins showed that most of them are located on the surface, where proteins are in contact with other molecules. We present here a set of Poaceae genes that are likely to be involved in plant defense mechanisms and have evidence of positive selection. These genes are excellent candidates for future functional validation.  相似文献   
229.
Plants emit volatile organic compounds (VOCs) as a means to warn other plants of impending danger. Nearby plants exposed to the induced VOCs prepare their own defense weapons in response. Accumulated data supports this assertion, yet much of the evidence has been obtained in laboratories under artificial conditions where, for example, a single VOC might be applied at a concentration that plants do not actually experience in nature. Experiments conducted outdoors suggest that communication occurs only within a limited distance from the damaged plants. Thus, the question remains as to whether VOCs work as a single component or a specific blend, and at which concentrations VOCs elicit insect and pathogen defenses in undamaged plants. We discuss these issues based on available literature and our recent work, and propose future directions in this field.  相似文献   
230.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号