首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   517篇
  免费   64篇
  国内免费   67篇
  2023年   13篇
  2022年   23篇
  2021年   22篇
  2020年   22篇
  2019年   37篇
  2018年   18篇
  2017年   17篇
  2016年   28篇
  2015年   24篇
  2014年   51篇
  2013年   53篇
  2012年   37篇
  2011年   33篇
  2010年   26篇
  2009年   33篇
  2008年   26篇
  2007年   32篇
  2006年   34篇
  2005年   21篇
  2004年   30篇
  2003年   13篇
  2002年   8篇
  2001年   14篇
  2000年   6篇
  1999年   7篇
  1998年   6篇
  1997年   2篇
  1994年   1篇
  1993年   4篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1986年   2篇
排序方式: 共有648条查询结果,搜索用时 15 毫秒
41.
The development capability of reconstructed bovine embryos via ovum pick-up (OPU)-somatic cell nuclear transfer (SCNT) technique has been influenced by the maternal lineage of oocyte cytoplasm, but the underlying mechanism remains unclear. Since mitochondria are the richest maternal-inherited organelle, in this study, we intended to clarify the effect of mtDNA haplotypes on cloning efficiency. By PCR-RFLP method, we identified mtDNA haplotypes A and B, differing in six restriction sites. Reconstructed embryos with haplotype A cytoplast achieved better fusion and blastocyst formation rate (64.6% and 39.4%), as compared with haplotype B (53.6% and 26.3%; P < 0.05). To further evaluate the role of mitochondria, the quantity of mtDNA, ATP content, and mRNA level of mtDNA-encoded COXI, COXIII in both oocytes were measured. Our data indicated that mtDNA copy number in haplotype A oocyte was significantly higher than that in haplotype B oocyte, both at the GV (10(5.03 +/- 0.69) vs. 10(4.81 +/- 0.86) copies/oocyte) and MII stages (10(5.31 +/- 0.71) vs. 10(5.13 +/- 0.63) copies/oocyte; logarithmically transformed values; P < 0.05). ATP content in type A oocyte was also greater at the GV (1.67 +/- 0.09 vs. 1.27 +/- 0.1 pmol) and MII stages (5.18 +/- 0.07 vs. 2.68 +/- 0.03 pmol; P < 0.05). Similarly, the mRNA expression level of mtDNA-encoded COXI and COXIII in haplotype A oocyte was significantly higher comparing to haplotype B oocyte (3.3 +/- 2.0 x 10(3) vs. 0.68 +/- 0.45 x 10(3); 24.9 +/- 10.5 x 10(3) vs. 9.4 +/- 3.3 x 10(3), respectively; P < 0.05). The data suggest that mitochondrial structure, quantity, and function may significantly affect the developmental competence of reconstructed embryos.  相似文献   
42.
43.
Host race formation and speciation are at the core of the enormous insect diversification. Insect–host relationships can take many forms, ranging from parasitic to mutualistic. Despite its long history of study, many questions remain about host race formation and speciation. They are addressed in eight original papers of this special issue, including two review-type articles. In line with the scope of Entomologia Experimentalis et Applicata, they include both fundamental and applied studies. They reveal that host race formation and speciation can take many forms and that they are still active topics of entomological research.  相似文献   
44.
The Scandinavian post‐glacial history of the moss Rhytidium rugosum is traced on the basis of information from the nuclear markers ITS and gpd for 229 Scandinavian and 81 other specimens. Some haplotypes, groups or lineages identified in a NeighborNet split network are predominantly northern Scandinavian, whereas others are southern. With the distributions of individual haplotypes and the timing of the deglaciation in different parts of Scandinavia, this implies colonization from the south and from the north or north‐east. High haplotype and nucleotide diversity and the occurrence of certain private haplotypes in the north suggest that the species may have survived the Last Glacial Maximum in local refugia. Slightly higher numbers of private haplotypes in Scandinavia than in central or north‐eastern Europe also favour an explanation with at least some local glacial survival. Low diversity in the southernmost contiguous region of the Scandinavian mountain range is probably a result of recent land uplift and late colonization. The Scandinavian lowland regional populations probably represent remains of an earlier widespread population that became increasingly restricted to small and isolated areas when the vegetation closed during the post‐glacial period. Some of the lowland populations require extensive management to survive. © 2015 The Linnean Society of London, Botanical Journal of the Linnean Society, 2015, 179 , 635–657.  相似文献   
45.
The present investigation investigated the genetic structure of a monophyletic group of endemic species belonging to the Genista ephedroides species group: G. bocchierii, G. cilentina, G. demarcoi, G. dorycnifolia, G. ephedroides, G. gasparrinii, G. insularis, G. numidica, G. tyrrhena subsp. tyrrhena, G. tyrrhena subsp. pontiana and G. valsecchiae, all distributed in the western Mediterranean. Using seven plastid microsatellites, 16 populations (288 individuals) were screened. Haplotype fixation was observed in particular for most of the Tyrrhenian taxa (i.e. G. bocchierii, G. cilentina, G. demarcoi, G. ephedroides, G. gasparrinii, G. insularis, G. tyrrhena subsp. tyrrhena and G. valsecchiae). However, although genetic diversity within populations was low [(hS = 0.132 (± 0.056)], a high level of total plastid DNA diversity [hT = 0.866 (± 0.042)] was detected, and analysis of molecular variance indicated that variation is almost exclusively expressed among populations (95.25%). The plastid microsatellites identify two groups of taxa, one including Sardinian taxa and populations of G. tyrrhena subsp. pontiana and the other including two subgroups, one of which includes Sicilian/Aeolian elements and the other with G. numidica/G. cilentina and G. dorycnifolia. Results allow us to consider G. cilentina as originating by recent anthropogenic dispersal and G. tyrrhena subsp. pontiana as a possible stabilized hybrid between local plants and members of the Sardinian group contributing the maternal lineage. The evolutionary history of the group possibly results from the effects of ancient events fostering geodispersal and range contraction, followed by more recent long‐range dispersal or geodispersion over Pleistocenic land bridges. © 2015 The Linnean Society of London, Botanical Journal of the Linnean Society, 2015, 177 , 607–618.  相似文献   
46.
The Banded Iron Formations (BIFs) of south‐western Australia are terrestrial islands characterized by high species richness and endemism. Regional endemics occur across multiple formations without inhabiting the intervening landscape matrix. We investigated whether the occurrence on BIF terrestrial islands has led to genetic differentiation among the eight known populations of the regional endemic, Banksia arborea. Genetic structure was assessed using three chloroplast DNA sequence markers and 11 nuclear microsatellite loci. Phylogenetic relationships were assessed with statistical parsimony and Bayesian methods. Dates of haplotype divergence were estimated using the time to most recent common ancestor of B. arborea and Banksia purdieana, as well as a conservative angiosperm chloroplast (cp)DNA mutation rate. Population genetic diversity and structure was assessed amongst and within populations by genotyping 24 geographically clustered individuals from each BIF and three subpopulations within the Die Hardy Range BIF. Indirect gene flow estimates were determined using a method based on the frequency of private alleles. Banksia arborea showed low genetic diversity in (cp)DNA and a complex structural pattern, with genetic differentiation of some BIF populations and an absence of differentiation amongst others, reflecting either retention of ancestral polymorphism across northern BIF populations or more recent connectivity of these populations. There was little evidence of pollen dispersal both between BIFs and within the large BIF known as Die Hardy Range. © 2015 The Linnean Society of London, Biological Journal of the Linnean Society, 2015, 114 , 860–872.  相似文献   
47.
The identification of genetic markers linked to genes of agronomic importance is a major aim of crop research and breeding programmes. Here, we identify markers for Yr15, a major disease resistance gene for wheat yellow rust, using a segregating F2 population. After phenotyping, we implemented RNA sequencing (RNA‐Seq) of bulked pools to identify single‐nucleotide polymorphisms (SNP) associated with Yr15. Over 27 000 genes with SNPs were identified between the parents, and then classified based on the results from the sequenced bulks. We calculated the bulk frequency ratio (BFR) of SNPs between resistant and susceptible bulks, selecting those showing sixfold enrichment/depletion in the corresponding bulks (BFR > 6). Using additional filtering criteria, we reduced the number of genes with a putative SNP to 175. The 35 SNPs with the highest BFR values were converted into genome‐specific KASP assays using an automated bioinformatics pipeline (PolyMarker) which circumvents the limitations associated with the polyploid wheat genome. Twenty‐eight assays were polymorphic of which 22 (63%) mapped in the same linkage group as Yr15. Using these markers, we mapped Yr15 to a 0.77‐cM interval. The three most closely linked SNPs were tested across varieties and breeding lines representing UK elite germplasm. Two flanking markers were diagnostic in over 99% of lines tested, thus providing a reliable haplotype for marker‐assisted selection in these breeding programmes. Our results demonstrate that the proposed methodology can be applied in polyploid F2 populations to generate high‐resolution genetic maps across target intervals.  相似文献   
48.

Background

Cattle breeding populations are susceptible to the propagation of recessive diseases. Individual sires generate tens of thousands of progeny via artificial insemination. The frequency of deleterious alleles carried by such sires may increase considerably within few generations. Deleterious alleles manifest themselves often by missing homozygosity resulting from embryonic/fetal, perinatal or juvenile lethality of homozygotes.

Results

A scan for homozygous haplotype deficiency in 25,544 Fleckvieh cattle uncovered four haplotypes affecting reproductive and rearing success. Exploiting whole-genome resequencing data from 263 animals facilitated to pinpoint putatively causal mutations in two of these haplotypes. A mutation causing an evolutionarily unlikely substitution in SUGT1 was perfectly associated with a haplotype compromising insemination success. The mutation was not found in homozygous state in 10,363 animals (P = 1.79 × 10−5) and is thus likely to cause lethality of homozygous embryos. A frameshift mutation in SLC2A2 encoding glucose transporter 2 (GLUT2) compromises calf survival. The mutation leads to premature termination of translation and activates cryptic splice sites resulting in multiple exon variants also with premature translation termination. The affected calves exhibit stunted growth, resembling the phenotypic appearance of Fanconi-Bickel syndrome in humans (OMIM 227810), which is also caused by mutations in SLC2A2.

Conclusions

Exploiting comprehensive genotype and sequence data enabled us to reveal two deleterious alleles in SLC2A2 and SUGT1 that compromise pre- and postnatal survival in homozygous state. Our results provide the basis for genome-assisted approaches to avoiding inadvertent carrier matings and to improving reproductive and rearing success in Fleckvieh cattle.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1483-7) contains supplementary material, which is available to authorized users.  相似文献   
49.
Asexual reproduction is commonly thought to be associated with low genetic diversity in animals. Echmepteryx hageni (Insecta: 'Psocoptera') is one of several psocopteran species that are primarily parthenogenetic, but also exists in small, isolated sexual populations. We used mitochondrial DNA sequences to investigate the population history and genealogical relationships between the sexual and asexual forms of this species. The asexual population of E. hageni exhibits extremely high mitochondrial haplotype diversity (H=0.98), whereas the sexual forms had significantly lower haplotypic diversity (H=0.25, after correcting for sample size). This diversity in asexuals represents one the greatest genetic diversities reported for asexual animals in the literature. Nucleotide diversities were also higher in asexual compared to sexual populations (π=0.0071 vs. 0.00027). Compared to other reported estimates of π in insects, asexual nucleotide diversity is high, but not remarkably elevated. Three hypotheses might explain the elevated genetic diversity of asexual populations: (i) larger effective population size, (ii) greater mutation rate or (iii) possible recent origin of sexuals. In addition, phylogeographic analysis revealed little geographic structure among asexual E. hageni, although specimens from the upper Midwest form a single clade and are genetically differentiated. The mismatch distribution and neutrality tests indicate a historical population size increase, possibly associated with expansion from glacial refugia.  相似文献   
50.
Assessing processes of geographic expansion in contact zones is a crucial step towards an accurate prediction of the evolution of species genetic diversity. The geographic distribution of cytonuclear discordance often reflects genetic introgression patterns across a species geographic range. Antirrhinum majus pseudomajus and A. m. striatum are two interfertile subspecies that occupy nonoverlapping areas but enter in contact in many locations at the margin of their geographic distribution. We found that genetic introgression between both subspecies was asymmetric at the local scale and geographically oriented in opposite directions at both ends of their contact zone perimeter in the Pyrenees. Our results suggest that the geographic expansion of A. majus subspecies was circular around the perimeter of their contact zone and pinpoint the need to integrate different spatial scales to unravel complex patterns of species geographic expansion.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号