首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9216篇
  免费   614篇
  国内免费   1316篇
  2024年   49篇
  2023年   234篇
  2022年   325篇
  2021年   392篇
  2020年   324篇
  2019年   415篇
  2018年   299篇
  2017年   240篇
  2016年   272篇
  2015年   332篇
  2014年   414篇
  2013年   611篇
  2012年   343篇
  2011年   428篇
  2010年   343篇
  2009年   399篇
  2008年   425篇
  2007年   420篇
  2006年   399篇
  2005年   469篇
  2004年   345篇
  2003年   334篇
  2002年   338篇
  2001年   210篇
  2000年   157篇
  1999年   186篇
  1998年   204篇
  1997年   180篇
  1996年   155篇
  1995年   165篇
  1994年   116篇
  1993年   134篇
  1992年   105篇
  1991年   89篇
  1990年   83篇
  1989年   83篇
  1988年   84篇
  1987年   87篇
  1986年   64篇
  1985年   131篇
  1984年   134篇
  1983年   110篇
  1982年   126篇
  1981年   98篇
  1980年   67篇
  1979年   73篇
  1978年   34篇
  1977年   34篇
  1976年   25篇
  1973年   24篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
11.
The collective redox activities of transition‐metal (TM) cations and oxygen anions have been shown to increase charge storage capacity in both Li‐rich layered and cation‐disordered rock‐salt cathodes. Repeated cycling involving anionic redox is known to trigger TM migration and phase transformation in layered Li‐ and Mn‐rich (LMR) oxides, however, detailed mechanistic understanding on the recently discovered Li‐rich rock‐salt cathodes is largely missing. The present study systematically investigates the effect of oxygen redox on a Li1.3Nb0.3Mn0.4O2 cathode and demonstrates that performance deterioration is directly correlated to the extent of oxygen redox. It is shown that voltage fade and hysteresis begin only after initiating anionic redox at high voltages, which grows progressively with either deeper oxidation of oxygen at higher potential or extended cycling. In contrast to what is reported on layered LMR oxides, extensive TM reduction is observed but phase transition is not detected in the cycled oxide. A densification/degradation mechanism is proposed accordingly which elucidates how a unique combination of extensive chemical reduction of TM and reduced quality of the Li percolation network in cation‐disordered rock‐salts can lead to performance degradation in these newer cathodes with 3D Li migration pathways. Design strategies to achieve balanced capacity and stability are also discussed.  相似文献   
12.
The injection of α-MSH or of one of its analogues ([Nle4-D.Phe7] α-MSH4–10) reduced, in vivo, the release of two cytokines (IL-1α and TNFα) involved in inflammation. The inflammatory state was induced in BALB/c mice by intraperitoneal injection of a sublethal dose of lipopolysaccharides (LPS). The assay of these cytokines by ELISA showed a reduction of 20% with α-MSH and between 30 and 60% with the α-MSH analogue. The α-MSH or the analogue was administered in one of two ways: intravenously or subcutaneously. The most efficient method seemed to be the subcutaneous one because it improved the activity 10,000 times more than the intravenous method. Moreover, the analogue induced a regression of mortality in the animals treated by the intravenous method. Our results show that α-MSH and one of its analogues inhibit IL-1α and TNFα, and can be used as anti-inflammatory molecules.  相似文献   
13.
Peroxidase oxidation of o-dianisidine, 3,3′,5,5′-tetramethylbenzidine, and o-phenylenediamine in the presence of sodium dodecyl sulfate (SDS), an anionic surfactant, was spectrophotometrically studied. It was found that 0.1–100 mM SDS concentrations stabilize intermediates formed in the peroxidase oxidation of these substrates. The cause of the stabilization is an electrostatic interaction between positively charged intermediates and negatively charged surfactant.  相似文献   
14.
ABSTRACT. The rate of lipid synthesis from [14C]acetate in fat body from Schistocerca americana gregaria has been studied in vitro. Maximum incorporation is found on days 6–10 in adults and day 4 of the fifth stadium. The label appeared in the fatty acid components of triacyl-glycerol, diacylglycerol and phospholipid.
Lipid synthesis in vitro was inhibited by extracts of corpora cardiaca, and such inhibition was most marked (up to 85%) in fat bodies from insects at stages where fatty acid synthesis was greatest. HPLC separation of corpora cardiaca extracts gave several active fractions of which the most active was adipokinetic hormone 1 (AKH-1).  相似文献   
15.
16.
Small molecule inhibitors have a powerful blocking action on viral polymerases. The bioavailability of the inhibitor, nevertheless, often raise a significant selectivity constraint and may substantially limit the efficacy of therapy. Phosphonoacetic acid has long been known to possess a restricted potential to block DNA biosynthesis. In order to achieve a better affinity, this compound has been linked with natural nucleotide at different positions. The structural context of the resulted conjugates has been found to be crucial for the acquisition by DNA polymerases. We show that nucleobase-conjugated phosphonoacetic acid is being accepted, but this alters the processivity of DNA polymerases. The data presented here not only provide a mechanistic rationale for a switch in the mode of DNA synthesis, but also highlight the nucleobase-targeted nucleotide functionalization as a route for enhancing the specificity of small molecule inhibitors.  相似文献   
17.
18.
Dienelactone hydrolase (DLH), an enzyme from the β-ketoadipate pathway, catalyzes the hydrolysis of dienelactone to maleylacetate. Our inhibitor binding studies suggest that its substrate, dienelactone, is held in the active site by hydrophobic interactions around the lactone ring and by the ion pairs between its carboxylate and Arg-81 and Arg-206. Like the cysteine/serine proteases, DLH has a catalytic triad (Cys-123, His-202, Asp-171) and its mechanism probably involves the formation of covalently bound acyl intermediate via a tetrahedral intermediate. Unlike the proteases, DLH seems to protonate the incipient leaving group only after the collapse of the first tetrahedral intermediate, rendering DLH incapable of hydrolyzing amide analogues of its ester substrate. In addition, the triad His probably does not protonate the leaving group (enolate) or deprotonate the water for deacylation; rather, the enolate anion abstracts a proton from water and, in doing so, supplies the hydroxyl for deacylation. © 1993 Wiley-Liss, Inc.  相似文献   
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号