全文获取类型
收费全文 | 6062篇 |
免费 | 572篇 |
国内免费 | 96篇 |
专业分类
6730篇 |
出版年
2024年 | 17篇 |
2023年 | 78篇 |
2022年 | 94篇 |
2021年 | 118篇 |
2020年 | 171篇 |
2019年 | 211篇 |
2018年 | 240篇 |
2017年 | 164篇 |
2016年 | 167篇 |
2015年 | 181篇 |
2014年 | 277篇 |
2013年 | 373篇 |
2012年 | 129篇 |
2011年 | 299篇 |
2010年 | 330篇 |
2009年 | 349篇 |
2008年 | 454篇 |
2007年 | 406篇 |
2006年 | 372篇 |
2005年 | 347篇 |
2004年 | 275篇 |
2003年 | 263篇 |
2002年 | 199篇 |
2001年 | 101篇 |
2000年 | 91篇 |
1999年 | 99篇 |
1998年 | 117篇 |
1997年 | 89篇 |
1996年 | 68篇 |
1995年 | 86篇 |
1994年 | 63篇 |
1993年 | 60篇 |
1992年 | 45篇 |
1991年 | 40篇 |
1990年 | 32篇 |
1989年 | 31篇 |
1988年 | 29篇 |
1987年 | 24篇 |
1986年 | 16篇 |
1985年 | 24篇 |
1984年 | 59篇 |
1983年 | 34篇 |
1982年 | 38篇 |
1981年 | 24篇 |
1980年 | 24篇 |
1979年 | 11篇 |
1978年 | 3篇 |
1977年 | 4篇 |
1972年 | 1篇 |
1958年 | 1篇 |
排序方式: 共有6730条查询结果,搜索用时 15 毫秒
61.
Jiong Wang Liyong Gan Qianwen Zhang Vikas Reddu Yuecheng Peng Zhichao Liu Xinghua Xia Cheng Wang Xin Wang 《Liver Transplantation》2019,9(3)
A structurally simple molecular 1,10‐phenanthroline‐Cu complex on a mesostructured graphene matrix that can be active and selective toward CO2 reduction over H2 evolution in an aqueous solution is reported. The active sites consist of Cu(I) center in a distorted trigonal bipyramidal geometry, which enables the adsorption of CO2 with η1‐COO‐like configuration to commence the catalysis, with a turnover frequency of ≈45 s?1 at ?1 V versus reversible hydrogen electrode. Using in situ infrared spectroelectrochemical investigation, it is demonstrated that the Cu complex can be reversibly heterogenized near the graphene surface via potential control. An increase of electron density in the complex is observed as a result of the interaction from the electric field, which further tunes the electron distribution in the neighboring CO2. It is also found that the mesostructure of graphene matrix favored CO2 reduction on the Cu center over hydrogen evolution by limiting mass transport from the bulk solution to the electrode surface. 相似文献
62.
Three PBDEs (BDE25, BDE47, and BDE154) were selected to investigate the interactions between PBDEs and hen egg white lysozyme (HEWL) by molecular modeling, fluorescence spectroscopy, and FT‐IR spectra. The docking results showed that hydrogen bonds were formed between BDE25 and residue TRP63 and between BDE47 and TRP63 with bond lengths of 2.178 Å and 2.146 Å, respectively. The molecular dynamics simulations indicated that van der Waals forces played a predominant role in the binding of three PBDEs to HEWL. The observed fluorescence quenching can be attributed to the formation of complexes between HEWL and PBDEs, and the quenching mechanism is a static quenching. According to Förster's non‐radiative energy transfer theory, the binding distances r were < 7 nm, indicating a high probability of energy transfer from HEWL to the three PBDEs. The synchronous fluorescence showed that the emission maximum wavelength of tryptophan (TRP) residues emerged a red‐shift. FT‐IR spectra indicated that BDE25, BDE47 and BDE154 induced the α‐helix percentage of HEWL decreased from 32.70% ± 1.64% to 28.27% ± 1.41%, 27.50% ± 1.38% and 29.78% ± 1.49%, respectively, whereas the percentage of random coil increased from 26.67% ± 1.33% to 27.60% ± 1.38%, 29.18% ± 1.46% and 30.59% ± 1.53%, respectively. 相似文献
63.
食用调和油中花生油含量的近红外光谱分析 总被引:9,自引:0,他引:9
采用偏最小二乘法(PLS)等方法建立了食用调和油中花生油含量定量分析的近红外光谱定标模型。采集食用调和油样品在4 000 cm-1~10 000 cm-1范围内的近红外漫反射光谱,光谱经一阶导数处理后,采用偏最小二乘法建立样品中花生油含量的定标模型,并用Leave-one-out内部交叉验证法对模型进行验证。模型相关系数为0.99961,校正均方根RMSEC为0.830%。比较不同光谱预处理方法对定标模型的影响,结果表明一阶导数Corr.coeff最好。采用不同的化学计量学方法建立的定标模型中以偏最小二乘回归法最理想。 相似文献
64.
DNA ligases are essential guardians of genome integrity by virtue of their ability to recognize and seal 3′-OH/5′-phosphate nicks in duplex DNA. The substrate binding and three chemical steps of the ligation pathway are coupled to global and local changes in ligase structure, involving both massive protein domain movements and subtle remodeling of atomic contacts in the active site. Here we applied solution NMR spectroscopy to study the conformational dynamics of the Chlorella virus DNA ligase (ChVLig), a minimized eukaryal ATP-dependent ligase consisting of nucleotidyltransferase, OB, and latch domains. Our analysis of backbone 15N spin relaxation and 15N,1H residual dipolar couplings of the covalent ChVLig-AMP intermediate revealed conformational sampling on fast (picosecond to nanosecond) and slow timescales (microsecond to millisecond), indicative of interdomain and intradomain flexibility. We identified local and global changes in ChVLig-AMP structure and dynamics induced by phosphate. In particular, the chemical shift perturbations elicited by phosphate were clustered in the peptide motifs that comprise the active site. We hypothesize that phosphate anion mimics some of the conformational transitions that occur when ligase-adenylate interacts with the nick 5′-phosphate. 相似文献
65.
Conformational Dynamics and Structural Plasticity Play Critical Roles in the Ubiquitin Recognition of a UIM Domain 总被引:1,自引:0,他引:1
Nikolaos G. Sgourakis Mayank M. Patel Angel E. Garcia George I. Makhatadze Scott A. McCallum 《Journal of molecular biology》2010,396(4):1128-1144
Ubiquitin-interacting motifs (UIMs) are an important class of protein domains that interact with ubiquitin or ubiquitin-like proteins. These approximately 20-residue-long domains are found in a variety of ubiquitin receptor proteins and serve as recognition modules towards intracellular targets, which may be individual ubiquitin subunits or polyubiquitin chains attached to a variety of proteins. Previous structural studies of interactions between UIMs and ubiquitin have shown that UIMs adopt an extended structure of a single α-helix, containing a hydrophobic surface with a conserved sequence pattern that interacts with key hydrophobic residues on ubiquitin. In light of this large body of structural studies, details regarding the presence and the roles of structural dynamics and plasticity are surprisingly lacking. In order to better understand the structural basis of ubiquitin-UIM recognition, we have characterized changes in the structure and dynamics of ubiquitin upon binding of a UIM domain from the yeast Vps27 protein. The solution structure of a ubiquitin-UIM fusion protein designed to study these interactions is reported here and found to consist of a well-defined ubiquitin core and a bipartite UIM helix. Moreover, we have studied the plasticity of the docking interface, as well as global changes in ubiquitin due to UIM binding at the picoseconds-to-nanoseconds and microseconds-to-milliseconds protein motions by nuclear magnetic resonance relaxation. Changes in generalized-order parameters of amide groups show a distinct trend towards increased structural rigidity at the UIM-ubiquitin interface relative to values determined in unbound ubiquitin. Analysis of 15N Carr-Purcell-Meiboom-Gill relaxation dispersion measurements suggests the presence of two types of motions: one directly related to the UIM-binding interface and the other induced to distal parts of the protein. This study demonstrates a case where localized interactions among protein domains have global effects on protein motions at timescales ranging from picoseconds to milliseconds. 相似文献
66.
Urai M Yoshizaki H Anzai H Ogihara J Iwabuchi N Harayama S Sunairi M Nakajima M 《Carbohydrate research》2007,342(7):933-942
Rhodococcus erythropolis PR4 is a marine bacterium that can degrade various alkanes including pristane, a C(19) branched alkane. This strain produces a large quantity of extracellular polysaccharides, which are assumed to play an important role in the hydrocarbon tolerance of this bacterium. The strain produced two acidic extracellular polysaccharides, FR1 and FR2, and the latter showed emulsifying activity toward clove oil, whereas the former did not. FR2 was composed of D-galactose, D-glucose, D-mannose, D-glucuronic acid, and pyruvic acid at a molar ratio of 1:1:1:1:1, and contained 2.9% (w/w) stearic acid and 4.3% (w/w) palmitic acid attached via ester bonds. Therefore, we designated FR2 as a PR4 fatty acid-containing extracellular polysaccharide or FACEPS. The chemical structure of the PR4 FACEPS polysaccharide chain was determined by 1D (1)H and (13)C NMR spectroscopies as well as by 2D DQF-COSY, TOCSY, HMQC, HMBC, and NOESY experiments. The sugar chain of PR4 FACEPS was shown to consist of tetrasaccharide repeating units having the following structure: [structure: see text]. 相似文献
67.
Sergey S. Karlov Anastasia A. Selina Yuri F. Oprunenko Victor A. Tafeenko Judith A.K. Howard 《Inorganica chimica acta》2007,360(2):563-578
A new series of mono- and diphenylsubstituted silatranes and boratranes N(CH2CH2O)2(CHR3CR1R2O)MZ (M = Si, Z = CH2Cl, CCPh, H, OMenth, R1, R2, R3 = H, Ph; M = B, Z = nothing, R1, R2, R3 = H, Ph) have been synthesized. Both transalkoxylation and stepwise modification of a preformed metallatrane skeleton were used. The chloromethyl derivatives N(CH2CH2O)2(CHRCHRO)SiCH2Cl (R = H, Ph) react with tert-BuOK under intramolecular cycle expansion to give 1-tert-butoxy-2-carba-3-oxahomosilatranes N(CH2CH2O)(CH2CH2OCH2)(CHRCHRO)SiOtBu (R = H, Ph). The treatment of boratranes N(CH2CH2O)2(CH2CR1R2O)B (R1,R2 = H, Ph) with triflic acid and trimethylsilyl triflate results in the products of electrophilic attack at the nitrogen atom. The molecular structures of four silatranes and one boratrane bearing phenyl groups in the atrane skeleton were determined by the X-ray structure analysis. 相似文献
68.
F. Keilmann 《Journal of biological physics》2003,29(2-3):195-199
Quite unexpectedly, THz and infraredspectroscopy has now a real chance to solveproblems in the nanosciences. This rests ona new microscope technique that overcomesthe Abbe diffraction limit, by using thenear field of a metal antenna in closeproximity to a scanned sample surface. HereI briefly summarize present activities inthe microwave, mid-infrared and visiblespectral ranges. It seems straightforwardand highly desirable to fill the existinggap between about 20 GHz and 20 THz, andattain spatial resolution of 10 nm andbelow also in this important part of theelectromagnetic spectrum. 相似文献
69.
Lee KH Shin SY Hong JE Yang ST Kim JI Hahm KS Kim Y 《Biochemical and biophysical research communications》2003,309(3):591-597
Spinigerin is a linear antibacterial peptide derived from a termite insect. It consists of 25 amino acids and is devoid of cysteines. Spinigerin displays good lytic activities against Gram-positive and Gram-negative bacteria, but has no hemolytic activities against human erythrocytes. In this study, we present a three-dimensional solution structure of spinigerin in SDS micelles. According to CD data spinigerin has an alpha-helical conformation in the presence of TFE, DPC micelles, and SDS micelles. The three-dimensional structure of spinigerin as determined by NMR spectroscopy contains a stable alpha-helix from Lys4 to Thr23. Spinigerin (4-21), an 18-residue fragment from Lys4 to Leu21, contains a similar content of alpha-helical structure compared to native spinigerin and was found to retain antibacterial activity, too. Therefore, this alpha-helical structure and the strong electrostatic attraction between four Lys and three Arg residues in spinigerin and the negatively charged polar head groups of the phospholipids on the membrane surface play important roles in disrupting membrane and subsequent cell death. 相似文献
70.
Phosphorus magnetic resonance spectroscopy: its utility in examining the membrane hypothesis of schizophrenia 总被引:2,自引:0,他引:2
A novel approach to understanding the pathophysiology of schizophrenia has been the investigation of membrane composition and functional perturbations, referred to as the "Membrane Hypothesis of Schizophrenia." The evidence in support of this hypothesis has been accumulating in findings in patients with schizophrenia of reductions in phospholipids and essential fatty acids various peripheral tissues. Postmortem studies indicate similar reductions in essential fatty acids in the brain. However, the use of magnetic resonance spectroscopy (MRS) has provided an opportunity to examine aspects of membrane biochemistry in vivo in the living brain. MRS is a powerful, albeit complex, noninvasive quantitative imaging tool that offers several advantages over other methods of in vivo biochemical investigations. It has been used extensively in investigating brain biochemistry in schizophrenia. Phosphorus MRS (31P MRS) can provide important information about neuronal membranes, such as levels of phosphomonoesters that reflect the building blocks of neuronal membranes and phosphodiesters that reflect breakdown products. 31P MRS can also provide information about bioenergetics. Studies in patients with chronic schizophrenia as well as at first episode prior to treatment show a variety of alterations in neuronal membrane biochemistry, supportive of the membrane hypothesis of schizophrenia. Below, we will briefly review the principles underlying 31P MRS and findings to date. Magnetic resonance spectroscopy (MRS) is a powerful, albeit complex, imaging tool that permits investigation of brain biochemistry in vivo. It utilizes the magnetic resonance imaging hardware. It offers several advantages over other methods of in vivo biochemical investigations. MRS is noninvasive, there is no radiation exposure, does not require the use of tracer ligands or contrast media. Because of it is relatively benign, repeated measures are possible. It has been used extensively in investigating brain biochemistry in schizophrenia. 相似文献