首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1815篇
  免费   141篇
  国内免费   73篇
  2023年   16篇
  2022年   28篇
  2021年   23篇
  2020年   39篇
  2019年   38篇
  2018年   52篇
  2017年   39篇
  2016年   45篇
  2015年   40篇
  2014年   74篇
  2013年   147篇
  2012年   65篇
  2011年   101篇
  2010年   74篇
  2009年   103篇
  2008年   126篇
  2007年   114篇
  2006年   87篇
  2005年   95篇
  2004年   73篇
  2003年   53篇
  2002年   54篇
  2001年   42篇
  2000年   39篇
  1999年   37篇
  1998年   43篇
  1997年   30篇
  1996年   31篇
  1995年   31篇
  1994年   42篇
  1993年   29篇
  1992年   26篇
  1991年   19篇
  1990年   15篇
  1989年   25篇
  1988年   24篇
  1987年   23篇
  1986年   16篇
  1985年   20篇
  1984年   17篇
  1983年   8篇
  1982年   12篇
  1981年   2篇
  1980年   5篇
  1979年   3篇
  1978年   3篇
  1973年   1篇
排序方式: 共有2029条查询结果,搜索用时 31 毫秒
971.
Reinald Pamplona 《BBA》2008,1777(10):1249-1262
Nonenzymatic molecular modifications induced by reactive carbonyl species (RCS) generated by peroxidation of membrane phospholipids acyl chains play a causal role in the aging process. Most of the biological effects of RCS, mainly α,β-unsaturated aldehydes, di-aldehydes, and keto-aldehydes, are due to their capacity to react with cellular constituents, forming advanced lipoxidation end-products (ALEs). Compared to reactive oxygen and nitrogen species, lipid-derived RCS are stable and can diffuse within or even escape from the cell and attack targets far from the site of formation. Therefore, these soluble reactive intermediates, precursors of ALEs, are not only cytotoxic per se, but they also behave as mediators and propagators of oxidative stress and cellular and tissue damage. The consequent loss-of-function and structural integrity of modified biomolecules can have a wide range of downstream functional consequences and may be the cause of subsequent cellular dysfunctions and tissue damage. The causal role of ALEs in aging and longevity is inferred from the findings that follow: a) its accumulation with aging in several tissues and species; b) physiological interventions (dietary restriction) that increase longevity, decrease ALEs content; c) the longer the longevity of a species, the lower is the lipoxidation-derived molecular damage; and finally d) exacerbated levels of ALEs are associated with pathological states.  相似文献   
972.
Profilins are small proteins capable of binding actin, poly-l-proline and other proline-rich sequences, and phosphatidylinositol (4,5)-bisphosphate. A number of proline-rich ligands for profilin have been characterised, including proteins of the Ena/VASP and formin families. We have determined the high-resolution crystal structures of mouse profilin 2a in complex with peptides from two functionally important ligands from different families, VASP and mDia1. The structures show that the binding mode of the peptide ligand is strongly affected by the non-proline residues in the sequence, and the peptides from VASP and mDia1 bind to profilin 2a in distinct modes. The high resolution of the crystallographic data allowed us to detect conserved CH-π hydrogen bonds between the peptide and profilin in both complexes. Furthermore, both peptides, which are shown to have micromolar affinity, induced the dimerisation of profilin, potentially leading to functionally different ligand-profilin-actin complexes. The peptides did not significantly affect actin polymerisation kinetics in the presence or in the absence of profilin 2a. Mutant profilins were tested for binding to poly-l-proline and the VASP and mDia1 peptides, and the F139A mutant bound proline-rich ligands with near-native affinity. Peptide blotting using a series of designed peptides with profilins 1 and 2a indicates differences between the two profilins towards proline-rich peptides from mDia1 and VASP. Our data provide structural insights into the mechanisms of mDia1 and VASP regulated actin polymerisation.  相似文献   
973.
Pro-survival proteins in the B-cell lymphoma-2 (Bcl-2) family have a defined specificity profile for their cell death-inducing BH3-only antagonists. Solution structures of myeloid cell leukaemia-1 (Mcl-1) in complex with the BH3 domains from Noxa and Puma, two proteins regulated by the tumour suppressor p53, show that they bind as amphipathic α-helices in the same hydrophobic groove of Mcl-1, using conserved residues for binding. Thermodynamic parameters for the interaction of Noxa, Puma and the related BH3 domains of Bmf, Bim, Bid and Bak with Mcl-1 were determined by calorimetry. These unstructured BH3 domains bind Mcl-1 with affinities that span 3 orders of magnitude, and binding is an enthalpically driven and entropy-enthalpy-compensated process. Alanine scanning analysis of Noxa demonstrated that only a subset of residues is required for interaction with Mcl-1, and these residues are localised to a short highly conserved sequence motif that defines the BH3 domain. Chemical shift mapping of Mcl-1:BH3 complexes showed that Mcl-1 engages all BH3 ligands in a similar way and that, in addition to changes in the immediate vicinity of the binding site, small molecule-wide structural adjustments accommodate ligand binding. Our studies show that unstructured peptides, such as the BH3 domains, behave like their structured counterparts and can bind tightly and selectively in an enthalpically driven process.  相似文献   
974.
Prediction of protein-RNA interactions at the atomic level of detail is crucial for our ability to understand and interfere with processes such as gene expression and regulation. Here, we investigate protein binding pockets that accommodate extruded nucleotides not involved in RNA base pairing. We observed that most of the protein-interacting nucleotides are part of a consecutive fragment of at least two nucleotides whose rings have significant interactions with the protein. Many of these share the same protein binding cavity and more than 30% of such pairs are π-stacked. Since these local geometries cannot be inferred from the nucleotide identities, we present a novel framework for their prediction from the properties of protein binding sites.First, we present a classification of known RNA nucleotide and dinucleotide protein binding sites and identify the common types of shared 3-D physicochemical binding patterns. These are recognized by a new classification methodology that is based on spatial multiple alignment. The shared patterns reveal novel similarities between dinucleotide binding sites of proteins with different overall sequences, folds and functions. Given a protein structure, we use these patterns for the prediction of its RNA dinucleotide binding sites. Based on the binding modes of these nucleotides, we further predict an RNA fragment that interacts with those protein binding sites. With these knowledge-based predictions, we construct an RNA fragment that can have a previously unknown sequence and structure. In addition, we provide a drug design application in which the database of all known small-molecule binding sites is searched for regions similar to nucleotide and dinucleotide binding patterns, suggesting new fragments and scaffolds that can target them.  相似文献   
975.
976.
We have determined the solution structure of epidermal growth factor receptor pathway substrate 8 (Eps8) L1 Src homology 3 (SH3) domain in complex with the PPVPNPDYEPIR peptide from the CD3ε cytoplasmic tail. Our structure reveals the distinct structural features that account for the unusual specificity of the Eps8 family SH3 domains for ligands containing a PxxDY motif instead of canonical PxxP ligands. The CD3ε peptide binds Eps8L1 SH3 in a class II orientation, but neither adopts a polyproline II helical conformation nor engages the first proline-binding pocket of the SH3 ligand binding interface. Ile531 of Eps8L1 SH3, instead of Tyr or Phe residues typically found in this position in SH3 domains, renders this hydrophobic pocket smaller and nonoptimal for binding to conventional PxxP peptides. A positively charged arginine at position 512 in the n-Src loop of Eps8L1 SH3 plays a key role in PxxDY motif recognition by forming a salt bridge to D7 of the CD3ε peptide. In addition, our structural model suggests a hydrogen bond between the hydroxyl group of the aromatic ring of Y8 and the carboxyl group of E496, thus explaining the critical role of the PxxDY motif tyrosine residue in binding to Eps8 family SH3. These finding have direct implications also for understanding the atypical binding specificity of the amino-terminal SH3 of the Nck family proteins.  相似文献   
977.
The Shc (Src homology collagen-like) adaptor protein plays a crucial role in linking stimulated receptors to mitogen-activated protein kinase activation through the formation of dynamic signalling complexes. Shc comprises an N-terminal phosphotyrosine binding (PTB) domain, a C-terminal Src homology 2 (SH2) domain and a central proline-rich collagen homology 1 domain. The latter domain contains three tyrosine residues that are known to become phosphorylated. We have expressed and purified the human p52Shc isoform and characterised its binding to different ligands. CD spectra revealed that some parts of the Shc protein are not fully folded, remaining largely unaffected by the binding of ligands. The PTB domain binds peptide and Ins-1,4,5-P3 (but not Ins-1,3,5-P3) independently, suggesting two distinct sites of interaction. In the unphosphorylated Shc, the SH2 domain is non-functional. Ligand binding to the PTB domain does not affect this. However, phosphorylation of the three tyrosine residues promotes binding to the SH2 domain. Thus, Shc has an intrinsic phosphorylation-dependent gating mechanism where the SH2 domain adopts an open conformation only when tyrosine phosphorylation has occurred.  相似文献   
978.
Many important protein-protein interactions are mediated by peptide recognition modular domains, such as the Src homology 3 (SH3), SH2, PDZ, and WW domains. Characterizing the interaction interface of domain-peptide complexes and predicting binding specificity for modular domains are critical for deciphering protein-protein interaction networks. Here, we propose the use of an energetic decomposition analysis to characterize domain-peptide interactions and the molecular interaction energy components (MIECs), including van der Waals, electrostatic, and desolvation energy between residue pairs on the binding interface. We show a proof-of-concept study on the amphiphysin-1 SH3 domain interacting with its peptide ligands. The structures of the human amphiphysin-1 SH3 domain complexed with 884 peptides were first modeled using virtual mutagenesis and optimized by molecular mechanics (MM) minimization. Next, the MIECs between domain and peptide residues were computed using the MM/generalized Born decomposition analysis. We conducted two types of statistical analyses on the MIECs to demonstrate their usefulness for predicting binding affinities of peptides and for classifying peptides into binder and non-binder categories. First, combining partial least squares analysis and genetic algorithm, we fitted linear regression models between the MIECs and the peptide binding affinities on the training data set. These models were then used to predict binding affinities for peptides in the test data set; the predicted values have a correlation coefficient of 0.81 and an unsigned mean error of 0.39 compared with the experimentally measured ones. The partial least squares-genetic algorithm analysis on the MIECs revealed the critical interactions for the binding specificity of the amphiphysin-1 SH3 domain. Next, a support vector machine (SVM) was employed to build classification models based on the MIECs of peptides in the training set. A rigorous training-validation procedure was used to assess the performances of different kernel functions in SVM and different combinations of the MIECs. The best SVM classifier gave satisfactory predictions for the test set, indicated by average prediction accuracy rates of 78% and 91% for the binding and non-binding peptides, respectively. We also showed that the performance of our approach on both binding affinity prediction and binder/non-binder classification was superior to the performances of the conventional MM/Poisson-Boltzmann solvent-accessible surface area and MM/generalized Born solvent-accessible surface area calculations. Our study demonstrates that the analysis of the MIECs between peptides and the SH3 domain can successfully characterize the binding interface, and it provides a framework to derive integrated prediction models for different domain-peptide systems.  相似文献   
979.
The neurotrophin receptor homolog (NRH2) is closely related to the p75 neurotrophin receptor (p75NTR); however, its function and role in neurotrophin signaling are unclear. NRH2 does not bind to nerve growth factor (NGF), however, is able to form a receptor complex with tropomyosin-related kinase receptor A (TrkA) and to generate high-affinity NGF binding sites. Despite this, the mechanisms underpinning the interaction between NRH2 and TrkA remain unknown. Here, we identify that the intracellular domain of NRH2 is required to form an association with TrkA. Our data suggest extensive intracellular interaction between NRH2 and TrkA, as either the juxtamembrane or death domain regions of NRH2 are sufficient for interaction with TrkA. In addition, we demonstrate that TrkA signaling is dramatically influenced by the co-expression of NRH2. Importantly, NRH2 did not influence all downstream TrkA signaling pathways, but rather exerted a specific effect, enhancing src homology 2 domain-containing transforming protein (Shc) activation. Moreover, downstream of Shc, the co-expression of NRH2 resulted in TrkA specifically modulating mitogen-activated protein kinase pathway activation, but not the phosphatidylinositol 3-kinase/Akt pathway. These results indicate that NRH2 utilizes intracellular mechanisms to not only regulate NGF binding to TrkA, but also specifically modulate TrkA receptor signaling, thus adding further layers of complexity and specificity to neurotrophin signaling.  相似文献   
980.
Midgut morphology of gastropod molluscs has been underutilized as a resource of characters for phylogenetic analysis. The exclusion of these features reflects the inference that they will be uninformative in determining phylogenetic relationships because they are functionally correlated. In general, it has been hypothesized that the style sac form of midgut is an adaptation to microphagy and becomes secondarily simplified in taxa that have adopted a macrophagous/carnivorous habit with a corresponding increase in extracellular digestion (i.e. radular trituration, gizzards and/or foregut glands). This assumption has resulted in the formulation of adaptive scenarios concerning gastropod alimentary systems, which are mapped onto phylogenetic hypotheses derived from other characters. However, any conclusions regarding phylogenetic utility, and therefore homology, must be realized within a cladistic context. For this analysis, a multi‐organ system anatomical data set was assembled for 16 caenogastropods and two outgroups. The data matrix comprises 64 characters and includes many systems poorly represented in previous broad‐based comparative surveys, such as the alimentary and reno‐pericardial systems. In addition, several taxa were included for which no comprehensive anatomical studies have been available (Cyclophoroidea, Ptenoglossa). Phylogenetic analysis with NONA 1.6 resulted in two most‐parsimonious trees with length 188, CI = 0.53 and RI = 0.63, differing only in the placement of Prunum apicinum and Conus jaspideus. The topology of the strict consensus (Macleaniella Theodoxus((Neocyclotus Marisa)((Lampanella((Petaloconchus Strombus)(Crepidula Bithyia)))(Littorina(Neverita(Cypraea(Nitidiscala(Panarona(Prunum Conus(Ilyanassa Urosalpinx)))))))))), is largely congruent with several independent estimates based on both morphological and molecular data, supporting caenogastropod monophyly and monphyly of the Architaenioglossa, Sorbeoconcha and Neogastropoda. To evaluate phylogenetic utility of the midgut, a broad sampling of taxa was included representing a diversity of feeding modes, food preferences and alimentary morphologies. Character optimization revealed that the evolution of midgut structure is highly mosaic, cutting broadly across patterns of feeding, diet and foregut complexity, to a degree previously unappreciated. In addition, features from the foregut (subradular organ, oesophageal folding) and midgut (position of gastric shield) are broadly distributed among large clades of caenogastropods, providing critical basal synapomorphies within the group. This demonstrates that the gut is an unexploited resource for important and informative characters in higher order systematics of caenogastropods. © 2003 The Linnean Society of London, Zoological Journal of the Linnean Society, 2003, 137 , 447–554.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号