首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   166158篇
  免费   11383篇
  国内免费   7700篇
  185241篇
  2024年   378篇
  2023年   2592篇
  2022年   3825篇
  2021年   5197篇
  2020年   5099篇
  2019年   6546篇
  2018年   5701篇
  2017年   4404篇
  2016年   4426篇
  2015年   5371篇
  2014年   9446篇
  2013年   12321篇
  2012年   7334篇
  2011年   9768篇
  2010年   8022篇
  2009年   8295篇
  2008年   8562篇
  2007年   8763篇
  2006年   7885篇
  2005年   7101篇
  2004年   6429篇
  2003年   5350篇
  2002年   4699篇
  2001年   3272篇
  2000年   2736篇
  1999年   2772篇
  1998年   2597篇
  1997年   2239篇
  1996年   2101篇
  1995年   1997篇
  1994年   1853篇
  1993年   1609篇
  1992年   1527篇
  1991年   1369篇
  1990年   1096篇
  1989年   996篇
  1988年   913篇
  1987年   823篇
  1986年   738篇
  1985年   1028篇
  1984年   1312篇
  1983年   943篇
  1982年   1091篇
  1981年   883篇
  1980年   818篇
  1979年   652篇
  1978年   521篇
  1977年   444篇
  1976年   418篇
  1975年   306篇
排序方式: 共有10000条查询结果,搜索用时 9 毫秒
991.
Cardiac vascular microenvironment is crucial for cardiac remodelling during the process of heart failure. Sphingosine 1‐phosphate (S1P) tightly regulates vascular homeostasis via its receptor, S1pr1. We therefore hypothesize that endothelial S1pr1 might be involved in pathological cardiac remodelling. In this study, heart failure was induced by transverse aortic constriction (TAC) operation. S1pr1 expression is significantly increased in microvascular endothelial cells (ECs) of post‐TAC hearts. Endothelial‐specific deletion of S1pr1 significantly aggravated cardiac dysfunction and deteriorated cardiac hypertrophy and fibrosis in myocardium. In vitro experiments demonstrated that S1P/S1pr1 praxis activated AKT/eNOS signalling pathway, leading to more production of nitric oxide (NO), which is an essential cardiac protective factor. Inhibition of AKT/eNOS pathway reversed the inhibitory effect of EC‐S1pr1‐overexpression on angiotensin II (AngII)‐induced cardiomyocyte (CM) hypertrophy, as well as on TGF‐β‐mediated cardiac fibroblast proliferation and transformation towards myofibroblasts. Finally, pharmacological activation of S1pr1 ameliorated TAC‐induced cardiac hypertrophy and fibrosis, leading to an improvement in cardiac function. Together, our results suggest that EC‐S1pr1 might prevent the development of pressure overload‐induced heart failure via AKT/eNOS pathway, and thus pharmacological activation of S1pr1 or EC‐targeting S1pr1‐AKT‐eNOS pathway could provide a future novel therapy to improve cardiac function during heart failure development.  相似文献   
992.
In our ongoing effort of discovering anticancer and chemopreventive agents, a series of 2-arylindole derivatives were synthesized and evaluated toward aromatase and quinone reductase 1 (QR1). Biological evaluation revealed that several compounds (e.g., 2d, IC50?=?1.61?μM; 21, IC50?=?3.05?μM; and 27, IC50?=?3.34?μM) showed aromatase inhibitory activity with half maximal inhibitory concentration (IC50) values in the low micromolar concentrations. With regard to the QR1 induction activity, 11 exhibited the highest QR1 induction ratio (IR) with a low concentration to double activity (CD) value (IR?=?8.34, CD?=?2.75?μM), while 7 showed the most potent CD value of 1.12?μM. A dual acting compound 24 showed aromatase inhibition (IC50?=?9.00?μM) as well as QR1 induction (CD?=?5.76?μM) activities. Computational docking studies using CDOCKER (Discovery Studio 3.5) provided insight in regard to the potential binding modes of 2-arylindoles within the aromatase active site. Predominantly, the 2-arylindoles preferred binding with the 2-aryl group toward a small hydrophobic pocket within the active site. The C-5 electron withdrawing group on indole was predicted to have an important role and formed a hydrogen bond with Ser478 (OH). Alternatively, meta-pyridyl analogs may orient with the pyridyl 3′-nitrogen coordinating with the heme group.  相似文献   
993.
The genetic theory of infectious diseases has proposed that susceptibility to life-threatening infectious diseases in childhood, occurring in the course of primary infection, results mostly from individually rare but collectively diverse single-gene variants. Recent evidence of an ever-expanding spectrum of genes involved in susceptibility to infectious disease indicates that the paradigm has important implications for diagnosis and treatment. One such pathology is childhood herpes simplex encephalitis, which shows a pattern of rare but diverse disease-disposing genetic variants. The present report shows how proteomics can help to understand susceptibility to childhood herpes simplex encephalitis and other viral infections, suggests that proteomics may have a particularly important role to play, emphasizes that variation over the population is a critical issue for proteomics and notes some new challenges for proteomics and related bioinformatics tools in the context of rare but diverse genetic defects.  相似文献   
994.
Solute carrier 34 A2 (SLC34A2) is a member of SLC34 family that is a group of phosphate transporters. SLC34A2 has been reported to play critical roles in tumorigenesis and progression. However, the researches about the biological roles of SLC34A2 in glioma have not yet been reported. In this study, we analyzed the expression patterns of SLC34A2 in clinical glioma tumor tissues and cell lines. The results demonstrated that SLC34A2 was generally overexpressed in both glioma tissues and cell lines. To further investigate the roles of SLC34A2 in glioma, lentivirus containing specific SLC34A2 short hairpin RNA (sh-SLC34A2) was used to infect glioma cell lines U251 and U87 for the knockdown of SLC34A2. The following studies proved that SLC34A2 knockdown exhibited suppressive effects on cell proliferation and migration/invasion. SLC34A2 knockdown also inhibited epithelial-mesenchymal transition (EMT) phenotype, as evidenced by the increased E-cadherin expression, and the decreased N-cadherin and fibronectin expressions. Besides, knockdown of SLC34A2 enhanced the temozolomide (TMZ) sensitivity of U251 and U87 cells. In vivo tumorigenicity assay demonstrated that SLC34A2 knockdown inhibited tumor growth. Moreover, SLC34A2 knockdown suppressed the activation of epidermal growth factor receptor (EGFR)/PI3K/AKT signaling pathway in U87 cells. GW2974 (EGFR inhibitor) increased SLC34A2 knockdown-inhibited cell proliferation, migration/invasion, as well as enhanced SLC34A2 knockdown-increased the TMZ sensitivity of glioma cells. These findings suggested that SLC34A2 might be a new potential therapeutic target for the therapy of glioma patients.  相似文献   
995.
Proton-gated TASK-3 K+ channel belongs to the K2P family of proteins that underlie the K+ leak setting the membrane potential in all cells. TASK-3 is under cooperative gating control by extracellular [H+]. Use of recently solved K2P structures allows us to explore the molecular mechanism of TASK-3 cooperative pH gating. Tunnel-like side portals define an extracellular ion pathway to the selectivity filter. We use a combination of molecular modeling and functional assays to show that pH-sensing histidine residues and K+ ions mutually interact electrostatically in the confines of the extracellular ion pathway. K+ ions modulate the pKa of sensing histidine side chains whose charge states in turn determine the open/closed transition of the channel pore. Cooperativity, and therefore steep dependence of TASK-3 K+ channel activity on extracellular pH, is dependent on an effect of the permeant ion on the channel pHo sensors.  相似文献   
996.
Acute lung injury (ALI) is a severe pulmonary disease that causes a high number of fatalities worldwide. Studies have shown that FoxA1 expression is upregulated during ALI and may play an important role in ALI by promoting the apoptosis of alveolar type II epithelial cells. However, the mechanism of FoxA1 overexpression in ALI is unclear. In this study, an in vivo murine model of ALI and alveolar type II epithelial cells injury was induced using lipopolysaccharide (LPS). LPS upregulated FoxA1 in the lung tissue of the in vivo ALI model and in LPS-challenged type II epithelial cells. In contrast, miR-17 was significantly downregulated in these models. After miR-17 antagomir injection, the expression of FoxA1 was significantly increased in ALI mice. MiR-17 mimics could significantly inhibit FoxA1 mRNA and protein expression, whereas the miR-17 inhibitor could significantly increase FoxA1 mRNA and protein expression in LPS-induced type II epithelial cells. Thus, our results suggest that the downregulation of miR-17 expression could lead to FoxA1 overexpression in ALI.  相似文献   
997.
Plant-derived extracts and phytochemicals have long been a subject of research in an effort to develop alternatives to conventional insecticides but with reduced health and environmental impacts. In this review we compare the bioactivities of some plant extracts with those of commercially available botanical insecticides against two important agricultural pests, the cabbage looper, Trichoplusia ni and the armyworm, Pseudaletia unipuncta. Test materials included extracts of Azadirachta indica (neem), A. excelsa (sentang), Melia volkensii, M. azedarach (Chinaberry) and Trichilia americana, (all belonging to the family Meliaceae) along with commercial botanical insecticides ryania, pyrethrum, rotenone and essential oils of rosemary and clove leaf. Most of the extracts and botanicals tested proved to be strong growth inhibitors, contact toxins and significant feeding deterrents to both lepidopteran species. However, there were interspecific differences with T. ni generally more susceptible to the botanicals than the armyworm, P. unipuncta. All botanicals were more inhibitory to growth and toxic (through feeding) to T. ni than to P. unipuncta, except for M. azedarach which was more toxic to P. unipuncta than to T. ni. Athough, pyrethrum was the most toxic botanical to both noctuids, A. indica, A. excelsa, and M. volkensii were more toxic than ryania, rotenone, clove oil and rosemary oil for T. ni. As feeding deterrents, pyrethrum was the most potent against T. ni, whereas A. indica was the most potent against the armyworm. Based upon growth inhibition, chronic toxicity, and antifeedant activity, some of these plant extracts have levels of activity that compare favorably to botanical products currently in commercial use and have potential for development as commercial insecticides.  相似文献   
998.
Adhesion is an important virulence function for Entamoeba histolytica, the causative agent of amoebic dysentery. Lipid rafts, cholesterol-rich domains, function in compartmentalization of cellular processes. In E. histolytica, rafts participate in parasite-host cell interactions; however, their role in parasite-host extracellular matrix (ECM) interactions has not been explored. Disruption of rafts with a cholesterol extracting agent, methyl-β-cyclodextrin (MβCD), resulted in inhibition of adhesion to collagen, and to a lesser extent, to fibronectin. Replenishment of cholesterol in MβCD-treated cells, using a lipoprotein-cholesterol concentrate, restored adhesion to collagen. Confocal microscopy revealed enrichment of rafts at parasite-ECM interfaces. A raft-resident adhesin, the galactose/N-acetylgalactosamine-inhibitable lectin, mediates interaction to host cells by binding to galactose or N-acetylgalactosamine moieties on host glycoproteins. In this study, galactose inhibited adhesion to collagen, but not to fibronectin. Together these data suggest that rafts participate in E. histolytica-ECM interactions and that raft-associated Gal/GalNAc lectin may serve as a collagen receptor.  相似文献   
999.
The behavior of insects and their perception of their surroundings are driven, in a large part, by odorants and pheromones. This is especially true for social insects, such as the honey bee, where the queen controls the development and the caste status of the other individuals. Pheromone perception is a complex phenomenon relying on a cascade of recognition events, initiated in antennae by pheromone recognition by a pheromone-binding protein and finishing with signal transduction at the axon membrane level. With to the objective of deciphering this initial step, we have determined the structures of the bee antennal pheromone-binding protein (ASP1) in the apo form and in complex with the main component of the queen mandibular pheromonal mixture, 9-keto-2(E)-decenoic acid (9-ODA) and with nonpheromonal components. In the apo protein, the C terminus obstructs the binding site. In contrast, ASP1 complexes have different open conformations, depending on the ligand shape, leading to different volumes of the binding cavity. The binding site integrity depends on the C terminus (111-119) conformation, which involves the interplay of two factors; i.e. the presence of a ligand and a low pH. Ligand binding to ASP1 is favored by low pH, opposite to what is observed with other pheromone-binding proteins, such as those of Bombyx mori and Anopheles gambiae.  相似文献   
1000.
The p75NTR (where NTR is neurotrophin receptor) can mediate many distinct cellular functions, including cell survival and apoptosis, axonal growth and cell proliferation, depending on the cellular context. This multifunctional receptor is widely expressed in the CNS (central nervous system) during development, but its expression is restricted in the adult brain. However, p75NTR is induced by a variety of pathophysiological insults, including seizures, lesions and degenerative disease. We have demonstrated previously that p75NTR is induced by seizures in neurons, where it induces apoptosis, and in astrocytes, where it may regulate proliferation. In the present study, we have investigated whether the inflammatory cytokines IL (interleukin)-1β and TNF-α (tumour necrosis factor-α), that are commonly elevated in these pathological conditions, mediate the regulation of p75NTR in neurons and astrocytes. We have further analysed the signal transduction pathways by which these cytokines induce p75NTR expression in the different cell types, specifically investigating the roles of the NF-κB (nuclear factor κB) and p38 MAPK (mitogen-activated protein kinase) pathways. We have demonstrated that both cytokines regulate p75NTR expression; however, the mechanisms governing this regulation are cytokine- and cell-type specific. The distinct mechanisms of cytokine-mediated p75NTR regulation that we demonstrate in the present study may facilitate therapeutic intervention in regulation of this receptor in a cell-selective manner.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号