首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   70篇
  免费   6篇
  国内免费   1篇
  77篇
  2022年   2篇
  2021年   4篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2017年   4篇
  2016年   4篇
  2015年   1篇
  2014年   7篇
  2013年   2篇
  2012年   6篇
  2011年   6篇
  2010年   2篇
  2009年   1篇
  2008年   6篇
  2007年   6篇
  2006年   1篇
  2005年   3篇
  2004年   6篇
  2003年   1篇
  2002年   3篇
  2001年   1篇
  1997年   3篇
  1996年   2篇
  1991年   1篇
  1986年   2篇
排序方式: 共有77条查询结果,搜索用时 15 毫秒
11.
The prediction that selection affects the genome in a locus-specific way also affecting flanking neutral variation, known as genetic hitchhiking, enables the use of polymorphic markers in noncoding regions to detect the footprints of selection. However, as the strength of the selective footprint on a locus depends on the distance from the selected site and will decay with time due to recombination, the utilization of polymorphic markers closely linked to coding regions of the genome should increase the probability of detecting the footprints of selection as more gene-containing regions are covered. The occurrence of highly polymorphic microsatellites in the untranslated regions of expressed sequence tags (ESTs) is a potentially useful source of gene-associated polymorphisms which has thus far not been utilized for genome screens in natural populations. In this study, we searched for the genetic signatures of divergent selection by screening 95 genomic and EST-derived mini- and microsatellites in eight natural Atlantic salmon, Salmo salar L., populations from different spatial scales inhabiting contrasting natural environments (salt-, brackish, and freshwater habitat). Altogether, we identified nine EST-associated microsatellites, which exhibited highly significant deviations from the neutral expectations using different statistical methods at various spatial scales and showed similar trends in separate population samples from different environments (salt-, brackish, and freshwater habitats) and sea areas (Barents vs. White Sea). We consider these ESTs as the best candidate loci affected by divergent selection, and hence, they serve as promising genes associated with adaptive divergence in Atlantic salmon. Our results demonstrate that EST-linked microsatellite genome scans provide an efficient strategy for discovering functional polymorphisms, especially in nonmodel organisms.  相似文献   
12.
We study the population genetics of adaptation in nonequilibrium haploid asexual populations. We find that the accumulation of deleterious mutations, due to the operation of Muller's ratchet, can considerably reduce the rate of fixation of advantageous alleles. Such reduction can be approximated reasonably well by a reduction in the effective population size. In the absence of Muller's ratchet, a beneficial mutation can only become fixed if it creates the best possible genotype; if Muller's ratchet operates, however, mutations initially arising in a nonoptimal genotype can also become fixed in the population, since the loss of the least-loaded class implies that an initially nonoptimal background can become optimal. We show that, while the rate at which adaptive mutations become fixed is reduced, the rate of fixation of deleterious mutations due to the ratchet is not changed by the presence of beneficial mutations as long as the rate of their occurrence is low and the deleterious effects of mutations (s(d)) are higher than the beneficial effects (s(a)). When s(a) > s(d), the advantage of a beneficial mutation can outweigh the deleterious effects of associated mutations. Under these conditions, a beneficial allele can drag to fixation deleterious mutations initially associated with it at a higher rate than in the absence of advantageous alleles. We propose analytical approximations for the rates of accumulation of deleterious and beneficial mutations. Furthermore, when allowing for the possible occurrence of interference between beneficial alleles, we find that the presence of deleterious mutations of either very weak or very strong effect can marginally increase the rate of accumulation of beneficial mutations over that observed in the absence of such deleterious mutations.  相似文献   
13.
Loci with higher levels of population differentiation than the neutral expectation are traditionally interpreted as evidence of ongoing selection that varies in space. This article emphasizes an alternative explanation that has been largely overlooked to date: in species subdivided into large subpopulations, enhanced differentiation can also be the signature left by the fixation of an unconditionally favorable mutation on its chromosomal neighborhood. This is because the hitchhiking effect is expected to diminish as the favorable mutation spreads from the deme in which it originated to other demes. To discriminate among the two alternative scenarios one needs to investigate how genetic structure varies along the chromosomal region of the locus. Local hitchhiking is shown to generate a single sharp peak of differentiation centered on the adaptive polymorphism and the standard signature of a selective sweep only in those subpopulations in which the allele is favored. Global hitchhiking produces two domes of differentiation on either side of the fixed advantageous mutation and signatures of a selective sweep in every subpopulation, albeit of different magnitude. Investigating population differentiation around a locus that strongly differentiates two otherwise genetically similar populations of the marine mussel Mytilus edulis, plausible evidence for the global hitchhiking hypothesis has been obtained. Global hitchhiking is a neglected phenomenon that might prove to be important in species with large population sizes such as many marine invertebrates.  相似文献   
14.
15.
IS THE POPULATION SIZE OF A SPECIES RELEVANT TO ITS EVOLUTION?   总被引:13,自引:1,他引:12  
Abstract This paper examines aspects of genetic draft, the stochastic force induced by substitutions at one locus on the dynamics of a closely linked locus. Of particular interest is the role of population size on genetic draft. Remarkably, the rate of substitution of weakly selected advantageous mutations decreases with increasing population size, whereas that for deleterious mutations increases with population size. This dependency on population size is the opposite of that for genetic drift. Moreover, these rates are only weakly dependent on population size, again contrary to the strong dependency of drift‐based dynamics. Four models of the strongly selected loci responsible for genetic draft are examined. Three of these exhibit a very weak dependency on population size, which implies that their induced effects will also be weakly dependent on population size. Together, these results suggest that population size and binomial sampling may not be relevant to a species' evolution. If this is the case, then a number of evolutionary conundrums are resolved.  相似文献   
16.
Recently, inter-population comparisons of allele frequencies to detect past selection haven gained popularity. Data from genome-wide scans are used to detect the number and position of genes that have responded to unknown selection pressures in natural populations, or known selection pressures in experimental lines. Yet, the limitations and possibilities of these methods have not been well studied. In this paper, the objectives were (1) to investigate the distance over which a signal of directional selection is detectable under various scenarios, and (2) to study the power of the method depending on the properties of the used markers, for both natural populations and experimental set-ups. A combination of recurrence equations and simulations was used. The results show that intermediate strength selection on new mutations can be detected with a marker spacing of about 0.5 cM in large natural populations, 200 to 400 generations after the divergence of subpopulations. In experimental situations, only strong selection will be detectable, while markers can be spaced a few cM apart. Adaptation from standing variation in the base population will be hard to detect, though some solutions are presented for experimental designs.  相似文献   
17.
Phylogenetic trees based upon major histocompatibility complex (MHC) gene sequences, particularly those encompassing sites encoding the antigen recognition site, are often discordant with the species tree. It has been argued that the principal cause of such discordance is the presence of ancestrally derived polymorphisms persisting through speciation events as a consequence of selection. In the present study, we examine the evolution of the MHC class II DQα1 gene in an unusual family of hystricomorph rodents, the African mole-rats (Family: Bathyergidae). We show that there is a high level of trans-species polymorphism and that this is a result of positive selection. Furthermore, the major lineages of the gene tree are characterized by allelic motifs occurring in regions that coincide with the pocket domains of the putative antigen recognition site, a region that has been shown to be under positive selection in a number of MHC genes from a range of species. Finally, these alleles may have been retained for at least 48 million years. This is significantly older than the estimate for the equivalent primate locus and appears to be one of the oldest documented sets of MHC alleles. We suggest that these allelic motifs possess polymorphisms that have been immunologically important to African mole-rats over long periods of evolutionary history.  © 2007 The Linnean Society of London, Biological Journal of the Linnean Society , 2007, 91 , 493–503.  相似文献   
18.
The lymph nodes are major sites of cancer metastasis and immune activity, and thus represent important clinical targets. Although not as well-studied compared to subcutaneous administration, intravenous drug delivery is advantageous for lymph node delivery as it is commonly practiced in the clinic and has the potential to deliver therapeutics systemically to all lymph nodes. However, rapid clearance by the mononuclear phagocyte system, tight junctions of the blood vascular endothelium, and the collagenous matrix of the interstitium can limit the efficiency of lymph node drug delivery, which has prompted research into the design of nanoparticle-based drug delivery systems. In this mini review, we describe the physiological and biological barriers to lymph node targeting, how they inform nanoparticle design, and discuss the future outlook of lymph node targeting.  相似文献   
19.
Genetic differentiation between divergent populations is often greater in chromosome centres than peripheries. Commonly overlooked, this broadscale differentiation pattern is sometimes ascribed to heterogeneity in crossover rate and hence linked selection within chromosomes, but the underlying mechanisms remain incompletely understood. A literature survey across 46 organisms reveals that most eukaryotes indeed exhibit a reduced crossover rate in chromosome centres relative to the peripheries. Using simulations of populations diverging into ecologically different habitats through sorting of standing genetic variation, we demonstrate that such chromosome‐scale heterogeneity in crossover rate, combined with polygenic divergent selection, causes stronger hitchhiking and especially barriers to gene flow across chromosome centres. Without requiring selection on new mutations, this rapidly leads to elevated population differentiation in the low‐crossover centres relative to the high‐crossover peripheries of chromosomes (“Chromosome Centre‐Biased Differentiation”, CCBD). Using simulated and empirical data, we then show that strong CCBD between populations can provide evidence of polygenic adaptive divergence with a phase of gene flow. We further demonstrate that chromosome‐scale heterogeneity in crossover rate impacts analyses beyond that of population differentiation, including the inference of phylogenies and parallel adaptive evolution among populations, the detection of genetic loci under selection, and the interpretation of the strength of selection on genomic regions. Overall, our results call for a greater appreciation of chromosome‐scale heterogeneity in crossover rate in evolutionary genomics.  相似文献   
20.
Genomewide screens of genetic variation within and between populations can reveal signatures of selection implicated in adaptation and speciation. Genomic regions with low genetic diversity and elevated differentiation reflective of locally reduced effective population sizes (Ne) are candidates for barrier loci contributing to population divergence. Yet, such candidate genomic regions need not arise as a result of selection promoting adaptation or advancing reproductive isolation. Linked selection unrelated to lineage‐specific adaptation or population divergence can generate comparable signatures. It is challenging to distinguish between these processes, particularly when diverging populations share ancestral genetic variation. In this study, we took a comparative approach using population assemblages from distant clades assessing genomic parallelism of variation in Ne. Utilizing population‐level polymorphism data from 444 resequenced genomes of three avian clades spanning 50 million years of evolution, we tested whether population genetic summary statistics reflecting genomewide variation in Ne would covary among populations within clades, and importantly, also among clades where lineage sorting has been completed. All statistics including population‐scaled recombination rate (ρ), nucleotide diversity (π) and measures of genetic differentiation between populations (FST, PBS, dxy) were significantly correlated across all phylogenetic distances. Moreover, genomic regions with elevated levels of genetic differentiation were associated with inferred pericentromeric and subtelomeric regions. The phylogenetic stability of diversity landscapes and stable association with genomic features support a role of linked selection not necessarily associated with adaptation and speciation in shaping patterns of genomewide heterogeneity in genetic diversity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号