首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   716篇
  免费   43篇
  国内免费   9篇
  2023年   5篇
  2022年   13篇
  2021年   10篇
  2020年   11篇
  2019年   15篇
  2018年   21篇
  2017年   12篇
  2016年   18篇
  2015年   21篇
  2014年   43篇
  2013年   46篇
  2012年   40篇
  2011年   32篇
  2010年   32篇
  2009年   34篇
  2008年   46篇
  2007年   40篇
  2006年   33篇
  2005年   42篇
  2004年   33篇
  2003年   21篇
  2002年   11篇
  2001年   11篇
  2000年   18篇
  1999年   21篇
  1998年   25篇
  1997年   10篇
  1996年   6篇
  1995年   4篇
  1994年   5篇
  1993年   7篇
  1992年   6篇
  1991年   9篇
  1990年   5篇
  1989年   10篇
  1988年   11篇
  1987年   6篇
  1986年   4篇
  1985年   1篇
  1984年   5篇
  1983年   4篇
  1982年   7篇
  1981年   2篇
  1979年   7篇
  1978年   3篇
  1977年   1篇
  1975年   1篇
排序方式: 共有768条查询结果,搜索用时 31 毫秒
11.
Structural changes in different parts of the brain in rheumatoid arthritis (RA) patients have been reported. RA is not regarded as a brain disease. Body organs such as spleen and lung produce RA-relevant genes. We hypothesized that the structural changes in the brain are caused by changes of gene expression in body organs. Changes in different parts of the brain may be affected by altered gene expressions in different body organs. This study explored whether an association between gene expressions of an organ or a body part varies in different brain structures. By examining the association of the 10 most altered genes from a mouse model of spontaneous arthritis in a normal mouse population, we found two groups of gene expression patterns between five brain structures and spleen. The correlation patterns between the prefrontal cortex, nucleus accumbens, and spleen were similar, while the associations between the other three parts of the brain and spleen showed a different pattern. Among overall patterns of the associations between body organs and brain structures, spleen and lung had a similar pattern, and patterns for kidney and liver were similar. Analysis of the five additional known arthritis-relevant genes produced similar results. Analysis of 10 nonrelevant-arthritis genes did not result in a strong association of gene expression or clearly segregated patterns. Our data suggest that abnormal gene expressions in different diseased body organs may influence structural changes in different brain parts.  相似文献   
12.
The spleen is the main organ for immune defense during infection with Plasmodium parasites and splenomegaly is one of the major symptoms of such infections. Using a rodent model of Plasmodium yoelii infection, MHC class II+CD11c? non‐T, non‐B cells in the spleen were characterized. Although the proportion of conventional dendritic cells was reduced, that of MHC II+CD11c? non‐T, non‐B cells increased during the course of infection. The increase in this subpopulation was dependent on the presence of lymphocytes. Experiments using Rag‐2?/? mice with adoptively transferred normal spleen cells indicated that these cells were non‐lymphoid cells; however, their accumulation in the spleen during infection with P. yoelii depended on lymphocytes. Functionally, these MHC II+CD11c? non‐T, non‐B cells were able to produce the proinflammatory cytokines alpha tumor necrosis factor and interleukin‐6 in response to infected red blood cells, but had only a limited ability to activate antigen‐specific CD4+ T cells. This study revealed a novel interaction between MHC II+CD11c? non‐lymphoid cells and lymphoid cells in the accumulations of these non‐lymphoid cells in the spleen during infection with P. yoelii.
  相似文献   
13.
Sexual selection theory suggests that choice for partners carrying dissimilar genes at the major histocompatibility complex (MHC) may play a role in maintaining genetic variation in animal populations by limiting inbreeding or improving the immunity of future offspring. However, it is often difficult to establish whether the observed MHC dissimilarity among mates drives mate choice or represents a by‐product of inbreeding avoidance based on MHC‐independent cues. Here, we used 454‐sequencing and a 10‐year study of wild grey mouse lemurs (Microcebus murinus), small, solitary primates from western Madagascar, to compare the relative importance on the mate choice of two MHC class II genes, DRB and DQB, that are equally variable but display contrasting patterns of selection at the molecular level, with DRB under stronger diversifying selection. We further assessed the effect of the genetic relatedness and of the spatial distance among candidate mates on the detection of MHC‐dependent mate choice. Our results reveal inbreeding avoidance, along with disassortative mate choice at DRB, but not at DQB. DRB‐disassortative mate choice remains detectable after excluding all related dyads (characterized by a relatedness coefficient r > 0), but varies slightly with the spatial distance among candidate mates. These findings suggest that the observed deviations from random mate choice at MHC are driven by functionally important MHC genes (like DRB) rather than passively resulting from inbreeding avoidance and further emphasize the need for taking into account the spatial and genetic structure of the population in correlative tests of MHC‐dependent mate choice.  相似文献   
14.
Major histocompatibility complex (Mhc) genes are frequently used as a model for adaptive genetic diversity. Although associations between Mhc and disease resistance are frequently documented, little is known about the fitness consequences of Mhc variation in wild populations. Further, most work to date has involved testing associations between Mhc genotypes and fitness components. However, the functional diversity of the Mhc, and hence the mechanism by which selection on Mhc acts, depends on how genotypes map to the functional properties of Mhc molecules. Here, we test three hypotheses that relate Mhc diversity to fitness: (i) the maximal diversity hypothesis, (ii) the optimal diversity hypothesis and (iii) effect of specific Mhc types. We combine mark–recapture methods with analysis of long‐term breeding data to investigate the effects of Mhc class I functional diversity (Mhc supertypes) on individual fitness in a wild great tit (Parus major) population. We found that the presence of three different Mhc supertypes was associated with three different components of individual fitness: survival, annual recruitment and lifetime reproductive success (LRS). Great tits possessing Mhc supertype 3 experienced higher survival rates than those that did not, whereas individuals with Mhc supertype 6 experienced higher LRS and were more likely to recruit offspring each year. Conversely, great tits that possessed Mhc supertype 5 had reduced LRS. We found no evidence for a selective advantage of Mhc diversity, in terms of either maximal or optimal supertype diversity. Our results support the suggestion that specific Mhc types are an important determinant of individual fitness.  相似文献   
15.
Characterization and population genetic analysis of multilocus genes, such as those found in the major histocompatibility complex (MHC) is challenging in nonmodel vertebrates. The traditional method of extensive cloning and Sanger sequencing is costly and time‐intensive and indirect methods of assessment often underestimate total variation. Here, we explored the suitability of 454 pyrosequencing for characterizing multilocus genes for use in population genetic studies. We compared two sample tagging protocols and two bioinformatic procedures for 454 sequencing through characterization of a 185‐bp fragment of MHC DRB exon 2 in wolverines (Gulo gulo) and further compared the results with those from cloning and Sanger sequencing. We found 10 putative DRB alleles in the 88 individuals screened with between two and four alleles per individual, suggesting amplification of a duplicated DRB gene. In addition to the putative alleles, all individuals possessed an easily identifiable pseudogene. In our system, sequence variants with a frequency below 6% in an individual sample were usually artefacts. However, we found that sample preparation and data processing procedures can greatly affect variant frequencies in addition to the complexity of the multilocus system. Therefore, we recommend determining a per‐amplicon‐variant frequency threshold for each unique system. The extremely deep coverage obtained in our study (approximately 5000×) coupled with the semi‐quantitative nature of pyrosequencing enabled us to assign all putative alleles to the two DRB loci, which is generally not possible using traditional methods. Our method of obtaining locus‐specific MHC genotypes will enhance population genetic analyses and studies on disease susceptibility in nonmodel wildlife species.  相似文献   
16.
With their direct link to individual fitness, genes of the major histocompatibility complex (MHC) are a popular system to study the evolution of adaptive genetic diversity. However, owing to the highly dynamic evolution of the MHC region, the isolation, characterization and genotyping of MHC genes remain a major challenge. While high‐throughput sequencing technologies now provide unprecedented resolution of the high allelic diversity observed at the MHC, in many species, it remains unclear (i) how alleles are distributed among MHC loci, (ii) whether MHC loci are linked or segregate independently and (iii) how much copy number variation (CNV) can be observed for MHC genes in natural populations. Here, we show that the study of allele segregation patterns within families can provide significant insights in this context. We sequenced two MHC class I (MHC‐I) loci in 1267 European barn owls (Tyto alba), including 590 offspring from 130 families using Illumina MiSeq technology. Coupled with a high per‐individual sequencing coverage (~3000×), the study of allele segregation patterns within families provided information on three aspects of the architecture of MHC‐I variation in barn owls: (i) extensive sharing of alleles among loci, (ii) strong linkage of MHC‐I loci indicating tandem architecture and (iii) the presence of CNV in the barn owl MHC‐I. We conclude that the additional information that can be gained from high‐coverage amplicon sequencing by investigating allele segregation patterns in families not only helps improving the accuracy of MHC genotyping, but also contributes towards enhanced analyses in the context of MHC evolutionary ecology.  相似文献   
17.
Secukinumab is a human monoclonal antibody that selectively targets interleukin-17A and has been demonstrated to be highly efficacious in the treatment of moderate to severe plaque psoriasis, starting at early time points, with a sustained effect and a favorable safety profile. Biotherapeutics—including monoclonal antibodies (mAbs)—can be immunogenic, leading to formation of anti-drug antibodies (ADAs) that can result in unwanted effects, including hypersensitivity reactions or compromised therapeutic efficacy. To gain insight into possible explanations for the clinically observed low immunogenicity of secukinumab, we evaluated its immunogenicity potential by applying 2 different in vitro assays: T-cell activation and major histocompatibility complex–associated peptide proteomics (MAPPs). For both assays, monocyte-derived dendritic cells (DCs) from healthy donors were exposed in vitro to biotherapeutic proteins. DCs naturally process proteins and present the derived peptides in the context of human leukocyte antigen (HLA)-class II. HLA-DR–associated biotherapeutic-derived peptides, representing potential T–cell epitopes, were identified in the MAPPs assay. In the T-cell assay, autologous CD4+ T cells were co-cultured with secukinumab-exposed DCs and T-cell activation was measured by proliferation and interleukin-2 secretion. In the MAPPs analysis and T-cell activation assays, secukinumab consistently showed relatively low numbers of potential T-cell epitopes and low T-cell response rates, respectively, comparable to other biotherapeutics with known low clinical immunogenicity. In contrast, biotherapeutics with elevated clinical immunogenicity rates showed increased numbers of potential T-cell epitopes and increased T-cell response rates in T-cell activation assays, indicating an approximate correlation between in vitro assay results and clinical immunogenicity incidence.  相似文献   
18.
19.
Marine mammals are important models for studying convergent evolution and aquatic adaption, and thus reference genomes of marine mammals can provide evolutionary insights. Here, we present the first chromosome‐level marine mammal genome assembly based on the data generated by the BGISEQ‐500 platform, for a stranded female sperm whale (Physeter macrocephalus). Using this reference genome, we performed chromosome evolution analysis of the sperm whale, including constructing ancestral chromosomes, identifying chromosome rearrangement events and comparing with cattle chromosomes, which provides a resource for exploring marine mammal adaptation and speciation. We detected a high proportion of long interspersed nuclear elements and expanded gene families, and contraction of major histocompatibility complex region genes which were specific to sperm whale. Using comparisons with sheep and cattle, we analysed positively selected genes to identify gene pathways that may be related to adaptation to the marine environment. Further, we identified possible convergent evolution in aquatic mammals by testing for positively selected genes across three orders of marine mammals. In addition, we used publicly available resequencing data to confirm a rapid decline in global population size in the Pliocene to Pleistocene transition. This study sheds light on the chromosome evolution and genetic mechanisms underpinning sperm whale adaptations, providing valuable resources for future comparative genomics.  相似文献   
20.
Duplicated loci, for example those associated with major histocompatibility complex (MHC) genes, often have similar DNA sequences that can be coamplified with a pair of primers. This results in genotyping difficulties and inaccurate analyses. Here, we present a method to assign alleles to different loci in amplifications of duplicated loci. This method simultaneously considers several factors that may each affect correct allele assignment. These are the sharing of identical alleles among loci, null alleles, copy number variation, negative amplification, heterozygote excess or heterozygote deficiency, and linkage disequilibrium. The possible multilocus genotypes are extracted from the alleles for each individual and weighted to estimate the allele frequencies. The likelihood of an allele configuration is calculated and is optimized with a heuristic algorithm. Monte‐Carlo simulations and three empirical MHC data sets are used as examples to evaluate the efficacy of our method under different conditions. Our new software, mhc‐typer V1.1, is freely available at https://github.com/huangkang1987/mhc-typer .  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号