首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   37篇
  免费   5篇
  国内免费   10篇
  52篇
  2019年   1篇
  2018年   2篇
  2017年   3篇
  2014年   1篇
  2013年   1篇
  2010年   1篇
  2009年   2篇
  2008年   3篇
  2007年   1篇
  2006年   4篇
  2005年   5篇
  2004年   3篇
  2003年   4篇
  2002年   3篇
  2001年   5篇
  2000年   2篇
  1999年   2篇
  1998年   1篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1989年   1篇
排序方式: 共有52条查询结果,搜索用时 15 毫秒
31.
A series of batch, fed-batch, and continuous cultures was carried out to analyze the effects of methanol on the fermentation characteristics of recombinant Hansenula polymorpha for the production of hirudin, an anticoagulant. Hirudin expression efficiencies were greatly influenced by the methanol concentrations in continuous and fed-batch culture modes. At a steady state of continuous culture, an optimum methanol concentration of 1.7 g l−1 was determined at a dilution rate of 0.18 h−1 with 1.8 mg l−1 h−1 hirudin productivity. Journal of Industrial Microbiology & Biotechnology (2001) 27, 58–61. Received 21 September 2000/ Accepted in revised form 10 June 2001  相似文献   
32.
The 64 amino acid hirudin-like peptide HM2 (Hirudinaria manillensis) is one of the agents known to specifically block the blood-clotting enzyme thrombin, and therefore is used as a potential pharmacological tool for the treatment of arterial and venous thrombosis. This peptide and its derivatives provide a new set of probes for studies aimed at elucidating the structural basis of the inhibition of α-thrombin. We used 581, 699, and 492 nmr-derived constraints respectively in a protocol employing simulated annealing, followed by restrained molecular dynamics and restrained energy minimization to derive the three-dimensional structures of HM2 and its mutants the HM2(V + G) and the HM2(1–47). HM2 consists of a well-defined core region of two double-stranded β-sheet and a disordered C-terminus. These features are shared by other members of the hirudin family. The same type of folding has also been observed for recombinant hirudins whose structure has been determined in solution by nmr spectroscopy and in the structure of the complex hirudin-thrombin determined by x-ray diffraction. Molecular dynamics (MD) simulation methods were applied in the study of the structural and dynamic fluctuation properties of the hirudin derivatives solvated by 1625 and 1276 water molecules with periodic boundary conditions for HM2 and HM2(1–47), respectively. Trajectories of 100 and 50 ps for the two unconstrained systems were generated at constant temperature and pressure. Analysis of the MD simulation shows that the structure of the peptide core is fairly rigid and stable in itself while the conformation of the C-terminal tail, which is involved in the inhibitory mechanism of thrombin, fluctuates and appears as a disordered region. © 1997 John Wiley & Sons, Inc. Biopoly 41: 731–749, 1997  相似文献   
33.
This review summarizes studies on the reciprocal regulation of neuroblastoma neurite outgrowth by thrombin and protease nexin-1 (PN-1). PN-1 recently was shown to possess the same deduced amino acid sequence as the glial-derived neurite-promoting factor. The neurite outgrowth activity of PN-1 depends on its ability to inhibit thrombin. Thrombin not only blocks the neurite outgrowth activity of PN-1, but it also brings about neurite retraction in the presence of PN-1. Thrombin also produces neurite retraction in the absence of PN-1 and other regulatory factors. This suggests that its activity is due to a direct action on cells. The neurite retraction by thrombin depends on its proteolytic activity. It does not occur with the other serine proteases that have been tested, indicating that it is a specific effect and is not due to a general proteolytic effect that could detach neurites from the culture dish. Serum brings about neurite retraction in certain neuroblastoma cells and primary neuronal cultures; most of this activity is due to residual thrombin in the serum. Together, these results suggest that PN-1 and thrombin (or a thrombin-like protease) play a role in regulation of neurite outgrowth.  相似文献   
34.
The state of aggregation of recombinant desulfatohirudin (r-HV1) in solution under physiological conditions (pH 7.5, 0.15N NaCl) was investigated by sedimentation equilibrium. The weight-average molecular weight ¯M w determined by sedimentation equilibrium was found to be 6914±76 Da compared to 6964 Da expected from the amino acid sequence. The ¯M z /¯M w ratio was found to be 1.03, which demonstrates that under the conditions studied hirudin exists in solution as a monomer. This result is in agreement with the relative molecular weight (M r ) of recombinant hirudin variant 3 reported by Otto and Seckler [(1991),Eur. J. Biochem. 202, 67–73], who also used equilibrium ultracentrifugation, but not with the molecular weight estimated from gel permeation chromatography of natural hirudin (51,300 Da) [Konnoet al. (1988),Arch. Biochem. Biophys. 267, 158–166]. Knowledge of the state of aggregation is essential for understanding the mechanism of interaction of thrombin and hirudin under physiological conditions.Abbreviations ¯M w weight-average molecular weight - ¯M z Z-average molecular weight - M r relative molecular weight - NTSB 2-nitro-5-thiosulfobenzoic acid - Tris Tris(hydroxymethyl)aminomethane - r-HV1 recombinant desulfatohirudin - M molar extinction coefficient  相似文献   
35.
To improve the therapy efficacy of recombinant hirudin variant-2 (HV2), its PEGylation was investigated using linear mPEG-succinimidyl carbonate (mPEG-SC) and branched mPEG2-N-hydroxysuccinimide (mPEG2-NHS). The reaction mixtures of PEGylation were analyzed by RP-HPLC and the mono-PEG-HV2 products were purified by anion exchange chromatography (IEC). Effects of linear and branched PEG on the hydrolysis kinetics of the PEG reagent, the PEGylation kinetics of HV2 and the in vitro and in vivo bioactivity of mono-PEG-HV2 were investigated. The RP-HPLC and IEC analyses showed that linear and branched PEG-HV2 with identical molecular weight had different chromatographic behaviors. The reaction kinetics showed that branched mPEG2-NHS displayed higher hydrolysis rate but lower PEGylation rates than linear mPEG-SC. Consequently, HV2 conjugated with mPEG2-NHS required a greater molar ratio of PEG to HV2 than that of mPEG-SC to achieve the identically desired yield of mono-PEG-HV2. The in vitro and in vivo bioactivities of mono-PEG-HV2 showed that branched PEG-HV2 had higher therapeutic efficacy than linear PEG-HV2 with identical molecular weight. The in vivo bioactivity of mono-B-PEG40k-HV2 (mono-PEG-HV2 derived from 40 kDa branched mPEG2-NHS) had a markedly longer duration in rabbits than did unmodified HV2, which showed its potential to be developed as a candidate antithrombotic drug.  相似文献   
36.
In this study, a combined optimization method was developed to optimize the N‐terminal site‐specific PEGylation of recombinant hirudin variant‐2 (HV2) with different molecular weight mPEG‐propionaldehyde (mPEG‐ALD), which is a multifactor‐influencing process. The HV2‐PEGylation with 5 kDa mPEG‐ALD was first chosen to screen significant factors and determine the locally optimized conditions for maximizing the yield of mono‐PEGylated product using combined statistical methods, including the Plackett–Burman design, steepest ascent path analysis, and central composition design for the response surface methodology (RSM). Under the locally optimized conditions, PEGylation kinetics of HV2 with 5, 10, and 20 kDa mPEG‐ALD were further investigated. The molar ratio of polyethylene glycol to HV2 and reaction time (the two most significant factors influencing the PEGylation efficiency) were globally optimized in a wide range using kinetic analysis. The data predicted by the combined optimization method using RSM and kinetic analysis were in good agreement with the corresponding experiment data. PEGylation site analysis revealed that almost 100% of the obtained mono‐PEGylated‐HV2 was modified at the N‐terminus of HV2. This study demonstrated that the developed method is a useful tool for the optimization of the N‐terminal site‐specific PEGylation process to obtain a homogeneous mono‐PEGylated protein with desirable yield.  相似文献   
37.
Sun Z  Zhao Z  Zhao S  Sheng Y  Zhao Z  Gao C  Li J  Liu X 《Molecular biology reports》2009,36(5):1119-1127
Edema formation has been linked to thrombin toxicity induced by blood clot at the acute stage of intracerebral hemorrhage. Thrombin induces cell toxicity in neuron, microglia and astrocyte. Aquaporin (AQP) 4 and 9 are proteins expressed on astrocyte in rat brain and involved in the brain water accumulation in brain edema. Recombinant hirudin (r-Hirudin) is a direct inhibitor of thrombin that can block the toxicitic effect of thrombin. In this study, we demonstrated that autologous whole blood infusion in caudate nucleus up-regulates the expression of AQP4 and AQP9 mRNAs and proteins. AQP4 and AQP9 mRNAs expression peaked at about 6 h after blood infusion. The AQP4 protein peaked at about 48 h while AQP9 at about 24 h after blood infusion. Thrombin induced up-regulation of AQP4 and AQP9 were inhibited by r-Hirudin administration and significantly decreased the expression of both AQPs. We further investigated the relationship between edema formation and expression of AQP4 and AQP9. The data presented here may be helpful in optimizing r-Hirudin as an anti-thrombin drug in the treatment of edema at the acute stage of ICH. Zhe Sun and Zhenhuan Zhao contributed equally to this article.  相似文献   
38.
Fusion expression provides an effective means for the biosynthesis of longer peptides in Escherichia coli. However, the commonly used fusion tags are primarily suitable for laboratory scale applications due to the high cost of commercial affinity resins. Herein, a novel approach exploiting hirudin as a multipurpose fusion tag in combination with tobacco etch virus (TEV) protease cleavage has been developed for the efficient and cost-effective production of a 43-amino acid model peptide lunasin in E. coli at preparative scale. A fusion gene which allows for lunasin to be N-terminally fused to the C-terminus of hirudin through a flexible linker comprising a TEV protease cleavage site was designed and cloned in a secretion vector pTASH. By cultivation in a 7-L bioreactor, the fusion protein was excreted into the culture medium at a high yield of ~380?mg/L, which was conveniently recovered and purified by inexpensive HP20 hydrophobic chromatography at a recovery rate of ~80%. After polishing and cleavage with TEV protease, the finally purified lunasin was obtained with ≥95% purity and yield of ~86?mg/L culture medium. Conclusively, this hirudin tagging strategy is powerful in the production of lunasin and could be applicable for the production of other peptides at preparative scale.  相似文献   
39.
DNA改组技术在水蛭素实验进化中的应用   总被引:2,自引:0,他引:2  
蛋白质的改造是生物工程的重大研究课题.由于结构和功能预测的不精确性,而使按照三维结构信息进行定位诱变往往达不到预期的目的.近年来,另一条改造蛋白质的途径有较大的发展,即在实验室条件下模拟生物分子的自然进化,通过变异和靶功能的选择来获得改进性能的蛋白质[1],此过程称为生物分子实验定向进化.DNA改组(DNAshuffling)是一种改造基因和蛋白质的有效实验进化技术[2].它是在体外进行基因随机片段的重组,从而增加基因的多样性,促使有利变异与不利变异分离,通过选择使有利变异得到优化组合[3].DNA改组包含3个步骤:基因的随机片段化,自身引发PCR和重组合PCR.经过DNA改组的突变体库有可能选择到性能更优的突变体.为进行亲和淘选,需将突变体展示在噬菌体的表面[4].  相似文献   
40.
重组水蛭素相关肽Hi-lys的表达与纯化(英文)   总被引:1,自引:0,他引:1  
为开发一种新的有临床应用价值的抗血栓药物,根据水蛭素保持抗凝活性的2 0肽片段,设计并构建了水蛭素相关肽(Hi lys)与天冬酰胺酶C端的融合表达系统.为方便目的肽与融合伙伴的分离,增加了富含带电序列的8肽(KRKRKKSR)及酸敏感的天冬氨酰 脯氨酸(Asp Pro)位点,获得了表达质粒pED P8 Hi lys.将其转化E .coliBL 2 1,玉米浆培养基(kanr)培养,乳糖诱导获得融合蛋白(AnsB C P8 Hi lys)的高效表达.通过细菌裂解、包涵体洗涤、尿素溶解、乙醇沉淀、酸水解和DEAE 纤维素5 2柱层析纯化获得目的肽Hi lys ,用凝血酶测定法测得其抗凝活性为5 0ATU mg .  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号