首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6261篇
  免费   725篇
  国内免费   589篇
  7575篇
  2024年   44篇
  2023年   222篇
  2022年   294篇
  2021年   446篇
  2020年   493篇
  2019年   637篇
  2018年   397篇
  2017年   239篇
  2016年   282篇
  2015年   268篇
  2014年   386篇
  2013年   463篇
  2012年   269篇
  2011年   318篇
  2010年   211篇
  2009年   258篇
  2008年   259篇
  2007年   262篇
  2006年   218篇
  2005年   225篇
  2004年   183篇
  2003年   169篇
  2002年   143篇
  2001年   74篇
  2000年   68篇
  1999年   76篇
  1998年   65篇
  1997年   57篇
  1996年   53篇
  1995年   46篇
  1994年   41篇
  1993年   47篇
  1992年   32篇
  1991年   27篇
  1990年   31篇
  1989年   22篇
  1988年   25篇
  1987年   23篇
  1986年   26篇
  1985年   25篇
  1984年   29篇
  1983年   18篇
  1982年   23篇
  1981年   13篇
  1980年   19篇
  1979年   6篇
  1978年   10篇
  1977年   6篇
  1976年   7篇
  1974年   6篇
排序方式: 共有7575条查询结果,搜索用时 15 毫秒
41.
Summary A defined medium containing glucose and ammonium as the sole carbon and nitrogen sources was developed to support growth and streptonigrin production. In this defined medium, increased initial levels of ammonium resulted in increased growth suggesting that nitrogen is the growth limiting nutrient. In some cases, increased initial ammonium levels resulted in decreased specific streptonigrin productivity, suggesting that nitrogen regulatory mechanisms may adversely affect streptonigrin biosynthesis. This suggestion that nitrogen regulation adversely affects antibiotic biosynthesis is further supported by results from two studies in which the ammonium supply to the cells was controlled. In the first study, streptonigrin productivity and final titer were enhanced by the addition of an ammonium trapping agent. In the second experiment, when ammonium chloride was fed slowly throughout the course of cultivation, the production phase was lengthened and the maximum antibiotic concentration was enhanced compared to the batch controls containing either the same initial or the same total ammonium chloride levels. Although our results indicate streptonigrin production may be subject to nitrogen regulatory mechanisms, the effect of nitrogen on streptonigrin production cannot be strictly correlated to the extracellular ammonium concentration. In fact, we observed that when ammonium was depleted from the medium, streptonigrin production ceased.  相似文献   
42.
Abstract: Disruption of corticostriatal glutamate input in the striatum decreased significantly extracellular striatal glutamate and dopamine levels. Local administration of 300 µ M concentration of excitatory receptor agonist kainic acid increased significantly extracellular striatal dopamine in intact freely moving rats. These findings support the hypothesis that glutamate exerts a tonic facilitatory effect on striatal dopamine release. The effect of kainic acid on extracellular striatal glutamate concentration in intact rats was a biphasic increase. The first glutamate increase can be explained by stimulation of presynaptic kainate receptors present on corticostriatal glutamatergic nerve terminals; the second increase is probably the result of a continuous interaction of the different striatal neurotransmitters after disturbance of their balance. Release of dopamine and glutamate was modulated differently in the intact striatum and in the striatum deprived of corticostriatal input. Dopamine release in the denervated striatum after kainate receptor stimulation was significantly lower than in intact striatum, confirming the so-called cooperativity between glutamate and kainic acid. Loss of presynaptic kainate receptors on the glutamatergic nerve terminals after decortication resulted in a loss of effect of kainic acid on glutamate release in denervated striatum. Aspartate showed no significant changes in this study.  相似文献   
43.
Abstract: Reactive oxygen species have been implicated in neuronal injury associated with various neuropathological disorders. However, little is known regarding the relationship between antioxidant enzyme capacity and resultant toxicity. The antioxidant pathways of primary cerebrocortical cultures were directly examined using a novel technique that measures pentose phosphate pathway (PPP) activity, which is enzymatically coupled to glutathione peroxidase (GPx) detoxification of hydrogen peroxide (H2O2). PPP activity was quantified from data obtained by gas chromatography/mass spectrometry analysis of released labeled lactate following metabolic degradation of [1,6-13C2,6,6-2H2]glucose by cerebrocortical cultures. The antioxidant capacity of these cultures was systematically evaluated using H2O2, and the resultant toxicity was quantified by lactate dehydrogenase release. Exposure of primary mixed and purified astrocytic cultures to H2O2 caused stimulation of PPP activity in a concentration-dependent fashion from 0.25 to 22.2% and from 6.9 to 66.7% of glucose metabolized to lactate through the PPP, respectively. In the mixed cultures, chelation of iron before H2O2 exposure was protective and resulted in a correlation between PPP saturation and toxicity. Conversely, addition of iron, inhibition of GPx, or depletion of glutathione decreased H2O2-induced PPP stimulation and increased toxicity. These results implicate the Fenton reaction, reflect the pivotal role of GPx in H2O2 detoxification, and contribute to our understanding of the etiological role of free radicals in neuropathological conditions.  相似文献   
44.
45.
We have isolated a cDNA encoding transaldolase, an enzyme of the pentose-phosphate pathway, from potato (Solanum tuberosum). The 1.5 kb cDNA encodes a protein of 438 amino acid residues with a molecular mass of 47.8 kDa. When the potato cDNA was expressed in Escherichia coli a 45 kDa protein with transaldolase activity was produced. The first 62 amino acids of the deduced amino acid sequence represent an apparent plastid transit sequence. While the potato transaldolase has considerable similarity to the enzyme from cyanobacteria and Mycobacterium leprae, similarity to the conserved transaldolase enzymes from humans, E. coli and Saccharomyces cerevisiae is more limited. Northern analysis indicated that the transaldolase mRNA accumulated in tubers in response to wounding. Probing the RNA from various potato tissues indicated that the transaldolase mRNA accumulation to higher levels in the stem of mature potato plants than in either leaves or tubers. These data are consistent with a role for this enzyme in lignin biosynthesis.  相似文献   
46.
We have examined the distribution and extent of phosphorylation of the tight junction-associated protein ZO-1 in the epithelial MDCK cell line, and in three cell types that do not form tight junctions: S180 (sarcoma) cells, S180 cells transfected with E-cadherin (S180L), and primary cultures of astrocytes. In shortterm calcium chelation experiments on MDCK cells, removal of extracellular calcium caused cells to pull apart. However, ZO-1 remained concentrated at the plasma membrane and no change in ZO-1 phosphorylation was observed. Maintenance of MDCK cells in low calcium medium, conditions where no tight junctions are found, resulted in altered ZO-1 distribution and lower total phosphorylation of the protein. In S180 cells, ZO-1 was diffusely distributed along the entire cell surface, with concentration of the antigen in motile regions of the cell. Cell-cell contact was not a prerequisite for ZO-1 localization at the plasma membrane in this cell type, and the phosphate content of ZO-1 was found to be lower in S180 cells relative to MDCK cells. Expression of Ecadherin in S180L cells did not alter either the distribution or phosphorylation of ZO-1. In contrast to S180 cells, ZO-1 in primary cultures of astrocytes was concentrated at sites of cell-cell contact, and the phosphorylation state was the same as that in control MDCK cells. Comparison of one-dimensional proteolytic digests of 32P-labeled ZO-1 revealed the phosphorylation of two peptides in control MDCK cells that was absent in both MDCK cells grown in low calcium and in S180 cells.We would like to thank Cheryl Richards for her help with the cell culture and immunohistochemistry; David Begg, Gary Firestone, Vik Maraj, Manijeh Pasdar and Colin Rasmussen for helpful discussions; Jaclyn Peebles and Greg Morrison for help with graphics and photography; and Grace Martin and Bob Campenot for rat tail collagen. We are grateful to all the members of our laboratories for their friendship, advice and support. This work was supported by an Establishment Award to B.R.S. from the Alberta Heritage Foundation for Medical Research and grants to B.R.S. from the Kidney Foundation of Canada and the Medical Research Council of Canada. A.H. is funded by a Studentship from the AHFMR. K.L.S. was supported by a grant from the National Institutes of Health (DK-42799) to Gary L. Firestone. B.R.S. is a Medical Research Council of Canada and AHFMR Scholar.  相似文献   
47.
In the pyrimidine biosynthetic pathway, CTP synthetase catalyses the conversion of uridine 5-triphosphate (UTP) to cytidine 5-triphosphate (CTP). In the yeast Saccharomyces cerevisiae, the URA7 gene encoding this enzyme was previously shown to be nonessential for cell viability. The present paper describes the selection of synthetic lethal mutants in the CTP biosynthetic pathway that led us to clone a second gene, named URA8, which also encodes a CTP synthetase. Comparison of the predicted amino acid sequences of the products of URA7 and URA8 shows 78% identity. Deletion of the URA8 gene is viable in a haploid strain but simultaneous presence of null alleles both URA7 and URA8 is lethal. Based on the codon bias values for the two genes and the intracellular concentrations of CTP in strains deleted for one of the two genes, relative to the wild-type level, URA7 appears to be the major gene for CTP biosynthesis. Nevertheless, URA8 alone also allows yeast growth, at least under standard laboratory conditions.  相似文献   
48.
The Saccharomyces cerevisiae DIS2S1/GLC7 gene encodes a type 1 protein phosphatase indispensable for cell proliferation. We found that introduction of a multicopy DIS2S1 plasmid impaired growth of cells with reduced activity of the cAMP-dependent protein kinase. In order to understand further the interaction between the two enzymes, a temperature-sensitive mutation in the DIS2S1 gene was isolated. The mutant accumulated less glycogen than wild type at the permissive temperature, indicating that activity of the Dis2s1 protein phosphatase is attenuated by the mutation. Furthermore, the dis2s1 ts mutation was shown to be suppressed by a multicopy plasmid harboring PDE2, a gene for cAMP phosphodiesterase. These results indicate that the Ras-cAMP pathway interacts genetically with the DIS2S1/GLC7 gene.  相似文献   
49.
Pseudomonas sp. strain CF600 is an efficient degrader of phenol and methylsubstituted phenols. These compounds are degraded by the set of enzymes encoded by the plasmid locateddmpoperon. The sequences of all the fifteen structural genes required to encode the nine enzymes of the catabolic pathway have been determined and the corresponding proteins have been purified. In this review the interplay between the genetic analysis and biochemical characterisation of the catabolic pathway is emphasised. The first step in the pathway, the conversion of phenol to catechol, is catalysed by a novel multicomponent phenol hydroxylase. Here we summarise similarities of this enzyme with other multicomponent oxygenases, particularly methane monooxygenase (EC 1.14.13.25). The other enzymes encoded by the operon are those of the well-knownmeta-cleavage pathway for catechol, and include the recently discoveredmeta-pathway enzyme aldehyde dehydrogenase (acylating) (EC 1.2.1.10). The known properties of thesemeta-pathway enzymes, and isofunctional enzymes from other aromatic degraders, are summarised. Analysis of the sequences of the pathway proteins, many of which are unique to themeta-pathway, suggests new approaches to the study of these generally little-characterised enzymes. Furthermore, biochemical studies of some of these enzymes suggest that physical associations betweenmeta-pathway enzymes play an important role. In addition to the pathway enzymes, the specific regulator of phenol catabolism, DmpR, and its relationship to the XylR regulator of toluene and xylene catabolism is discussed.  相似文献   
50.
Pyridine and its derivatives have been found as pollutants in the environment. Although alkylpyridines constitute the largest class of pyridines contaminating the environment, little information is available concerning the fate and transformation of these compounds. In this investigation ethylpyridines have been used as model compounds for investigating the biodegradability of alkylpyridines. A mixed culture of ethylpyridine-degrading microorganisms was obtained from a soil that had been exposed to a variety of pyridine derivatives for several decades. The enrichment culture was able to degrade 2-, 3-, and 4-ethylpyridine (100 mg/L) at 28° C and pH 7 within two weeks under aerobic conditions. The degradation rate was greatest for 2-ethylpyridine and least for 3-ethylpyridine. Transformation of ethylpyridines was dependent on substrate concentration, pH, and incubation temperature. Studies on the metabolic pathway of 4-ethylpyridine revealed two products; these chemicals were identified by MS and NMR analyses as 4-ethyl-2(1H)-pyridone and 4-ethyl-2-piperidone. 6-Ethyl-2(1H)-pyridone was determined to be a product of 2-ethylpyridine degradation. These results indicate that the transformation mechanism of ethylpyridines involves hydroxylation and reduction of the aromatic ring before ring cleavage.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号