首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4018篇
  免费   133篇
  国内免费   132篇
  2023年   68篇
  2022年   105篇
  2021年   96篇
  2020年   78篇
  2019年   155篇
  2018年   160篇
  2017年   121篇
  2016年   97篇
  2015年   153篇
  2014年   247篇
  2013年   378篇
  2012年   214篇
  2011年   202篇
  2010年   208篇
  2009年   178篇
  2008年   174篇
  2007年   225篇
  2006年   190篇
  2005年   186篇
  2004年   91篇
  2003年   81篇
  2002年   86篇
  2001年   68篇
  2000年   59篇
  1999年   46篇
  1998年   36篇
  1997年   35篇
  1996年   28篇
  1995年   32篇
  1994年   16篇
  1993年   22篇
  1992年   38篇
  1991年   28篇
  1990年   12篇
  1989年   27篇
  1988年   26篇
  1987年   17篇
  1986年   15篇
  1985年   21篇
  1984年   52篇
  1983年   29篇
  1982年   32篇
  1981年   28篇
  1980年   22篇
  1979年   36篇
  1978年   19篇
  1977年   11篇
  1976年   8篇
  1975年   7篇
  1974年   8篇
排序方式: 共有4283条查询结果,搜索用时 15 毫秒
111.
The major mechanisms of gallstone formation include biliary cholesterol hypersecretion, supersaturation and crystallization, mucus hypersecretion, gel formation and bile stasis. Gallbladder hypomotility seems to be a key event that triggers the precipitation of cholesterol microcrystals from supersaturated lithogenic bile. Telocytes, a new type of interstitial cells, have been recently identified in many organs, including gallbladder. Considering telocyte functions, it is presumed that these cells might be involved in the signalling processes. The purpose of this study was to correlate the quantity of telocytes in the gallbladder with the lithogenicity of bile. Gallbladder specimens were collected from 24 patients who underwent elective laparoscopic cholecystectomy for symptomatic gallstone disease. The control group consisted of 25 consecutive patients who received elective treatment for pancreatic head tumours. Telocytes were visualized in paraffin sections of gallbladders with double immunofluorescence using primary antibodies against c‐Kit (anti‐CD117) and anti‐mast cell tryptase. Cholesterol, phospholipid and bile acid levels were measured in gallbladder bile. The number of telocytes in the gallbladder wall was significantly lower in the study group than that in the control group (3.03 ± 1.43 versus 6.34 ± 1.66 cell/field of view in the muscularis propria, < 0.001) and correlated with a significant increase in the cholesterol saturation index. The glycocholic and taurocholic acid levels were significantly elevated in the control subjects compared with the study group. The results suggest that bile composition may play an important role in the reduction in telocytes density in the gallbladder.  相似文献   
112.
NAFLD is an important public health issue closely associated with the pervasive epidemics of diabetes and obesity. Yet, despite NAFLD being among the most common of chronic liver diseases, the biological factors responsible for its transition from benign nonalcoholic fatty liver (NAFL) to NASH remain unclear. This lack of knowledge leads to a decreased ability to find relevant animal models, predict disease progression, or develop clinical treatments. In the current study, we used multiple mouse models of NAFLD, human correlation data, and selective gene overexpression of steroidogenic acute regulatory protein (StarD1) in mice to elucidate a plausible mechanistic pathway for promoting the transition from NAFL to NASH. We show that oxysterol 7α-hydroxylase (CYP7B1) controls the levels of intracellular regulatory oxysterols generated by the “acidic/alternative” pathway of cholesterol metabolism. Specifically, we report data showing that an inability to upregulate CYP7B1, in the setting of insulin resistance, results in the accumulation of toxic intracellular cholesterol metabolites that promote inflammation and hepatocyte injury. This metabolic pathway, initiated and exacerbated by insulin resistance, offers insight into approaches for the treatment of NAFLD.  相似文献   
113.
Lipoproteins play a key role in transport of cholesterol to and from tissues. Recent studies have also demonstrated that red blood cells (RBCs), which carry large quantities of free cholesterol in their membrane, play an important role in reverse cholesterol transport. However, the exact role of RBCs in systemic cholesterol metabolism is poorly understood. RBCs were incubated with autologous plasma or isolated lipoproteins resulting in a significant net amount of cholesterol moved from RBCs to HDL, while cholesterol from LDL moved in the opposite direction. Furthermore, the bi-directional cholesterol transport between RBCs and plasma lipoproteins was saturable and temperature-, energy-, and time-dependent, consistent with an active process. We did not find LDLR, ABCG1, or scavenger receptor class B type 1 in RBCs but found a substantial amount of ABCA1 mRNA and protein. However, specific cholesterol efflux from RBCs to isolated apoA-I was negligible, and ABCA1 silencing with siRNA or inhibition with vanadate and Probucol did not inhibit the efflux to apoA-I, HDL, or plasma. Cholesterol efflux from and cholesterol uptake by RBCs from Abca1+/+ and Abca1−/− mice were similar, arguing against the role of ABCA1 in cholesterol flux between RBCs and lipoproteins. Bioinformatics analysis identified ABCA7, ABCG5, lipoprotein lipase, and mitochondrial translocator protein as possible candidates that may mediate the cholesterol flux. Together, these results suggest that RBCs actively participate in cholesterol transport in the blood, but the role of cholesterol transporters in RBCs remains uncertain.  相似文献   
114.
115.
[目的] 为研究添加饲用益生菌对肉牛生长性能、血液生理生化指标及肠道微生物区系的影响。[方法] 在青海地区选取西门塔尔牛与荷斯坦牛的杂交1代18头,按每组平均体重相近的原则随机分为2组,每组9头,试验组饮食添加地衣芽孢杆菌、枯草芽孢杆菌和酿酒酵母的复合饲用益生菌。[结果] 试验结果表明:试验组显著地提高了胸围日增长量(P=0.029);试验组皮质醇浓度显著(P<0.05)高于对照组,高密度胆固醇脂蛋白、低密度胆固醇脂蛋白与总胆固醇浓度显著(P<0.05)低于对照组;进一步分析肠道微生物发现,两组之间Alpha多样性没有显著差异(P>0.05),Beta多样性差异显著(P<0.05);TenericutesAlistipesRuminococcaceae的相对丰度在试验组显著高于对照组(P<0.05),而Alloprevotella相对丰度显著低于对照组(P<0.05);检测到的芽孢杆菌种没有显著的差异,有趣的是,试验组降低了肠道中的大肠杆菌丰度。[结论] 综上,饲喂复合饲用益生菌能够有效降低血清胆固醇的合成、抑制有害微生物的繁殖。该研究为益生菌干预肉牛健康养殖提供了理论依据。  相似文献   
116.
The glyoxalase system and its main enzyme, glyoxalase 1 (GLO1), protect cells from advanced glycation end products (AGEs), such as methylglyoxal (MG) and other reactive dicarbonyls, the formation of which is increased in diabetes patients as a result of excessive glycolysis. MG is partly responsible for harmful protein alterations in living cells, notably in neurons, leading to their dysfunction, and recent studies have shown a negative correlation between GLO1 expression and tissue damage. Neuronal dysfunction is a common diabetes complication due to elevated blood sugar levels, leading to high levels of AGEs. The aim of our study was to determine whether single nucleotide polymorphisms (SNPs) in the GLO1 gene influence activity of the enzyme. In total, 125 healthy controls, 101 type 1 diabetes, and 100 type 2 diabetes patients were genotyped for three common SNPs, rs2736654 (A111E), rs1130534 (G124G), and rs1049346 (5′-UTR), in GLO1. GLO1 activity was determined in whole blood lysates for all participants of the study.  相似文献   
117.
Familial hypercholesterolemia (FH) results from impaired catabolism of plasma low density lipoproteins (LDL), thus leading to high cholesterol, atherosclerosis, and a high risk of premature myocardial infarction. FH is commonly caused by defects of the LDL receptor or its main ligand apoB, together mediating cellular uptake and clearance of plasma LDL. In some cases FH is inherited by mutations in the genes of PCSK9 and LDLRAP1 (ARH) in a dominant or recessive trait. The encoded proteins are required for LDL receptor stability and internalization within the LDLR pathway. To detect the underlying genetic defect in a family of Turkish descent showing unregular inheritance of severe FH, we screened the four candidate genes by denaturing gradient gel electrophoresis (DGGE) mutation analysis. We identified different combinatory mixtures of LDLR- and LDLRAP1-gene defects as the cause for severe familial hypercholesterolemia in this family. We also show for the first time that a heterozygous LDLR mutation combined with a homozygous LDLRAP1 mutation produces a more severe hypercholesterolemia phenotype in the same family than a homozygous LDLR mutation alone.  相似文献   
118.

Background and aims

Sustained interaction of advanced glycation end products (AGEs) with their receptor RAGE and subsequent signaling plays an important role in the development of diabetic complications. Genetic variation of RAGE gene may be associated with the development of vascular complications in type 2 diabetes mellitus (T2DM).

Objectives

The present study aimed to explore the possible association of RAGE gene polymorphisms namely − 374T/A, − 429T/C and G82S with serum level of AGEs, paraoxonase (PON1) activity and macro-vascular complications (MVC) in Indian type 2 diabetes mellitus patients (T2DM).

Methods

A total of 265 diabetic patients, including DM without any complications (n = 135), DM-MVC (n = 130) and 171 healthy individuals were enrolled. Genotyping of RAGE variants were assessed by polymerase chain reaction-restriction fragment length polymorphism. Serum AGEs were estimated by ELISA and fluorometrically. and PON1 activity was assessed spectrophotometrically.

Results

Of the three examined SNPs, association of − 429T/C polymorphism with MVC in T2DM was observed (OR = 3.001, p = 0.001) in the dominant model. Allele ‘A’ of − 374T/A polymorphism seems to confer better cardiac outcome in T2DM. Patients carrying C allele (− 429T/C) and S allele (G82S) had significantly higher AGEs levels. − 429T/C polymorphism was also found to be associated with low PON1 activity. Interaction analysis revealed that the risk of development of MVC was higher in T2DM patients carrying both a CC genotype of − 429T/C polymorphism and a higher level of AGEs (OR = 1.343, p = 0.040).

Conclusion

RAGE gene polymorphism has a significant effect on AGEs level and PON1 activity in diabetic subjects compared to healthy individuals. Diabetic patients with a CC genotype of − 429T/C are prone to develop MVC, more so if AGEs levels are high and PON1 activity is low.  相似文献   
119.

Background and aims

Non-alcoholic fatty liver disease (NAFLD) and elevated alanine transaminase (ALT) levels are common in obese Hispanic adults and children. Recently, a PNPLA3 gene variant (I148M) was strongly associated with NAFLD and higher ALT levels in obese adults, including Hispanics. The aims of this study were to estimate the frequency of elevated ALT levels, and to address the influence of obesity and PNPLA3/I148M on ALT levels in a general population sample of Mexican school-aged children.

Methods

A total of 1037 non-related Mexican children aged 6 to 12 years were genotyped for the I148M variant. Anthropometric, clinical and metabolic parameters were collected from all participants.

Results

Elevated ALT levels (> 35 U/L) were more frequent in obese (26.9%) and overweight (9.3%) than in normal weight children (2.2%). The M148M genotype was significantly associated with elevated ALT levels in this population (OR = 3.7, 95% CI 2.3–5.9; P = 3.7 × 10− 8), and children carrying the M148M genotype showed significantly lower HDL cholesterol levels and BMI z-core (P = 0.036 and 0.015, respectively). On stratifying by BMI percentile, this genotype conferred a much greater risk of elevated ALT levels in normal weight (OR = 19.9, 95% CI 2.5–157.7; P = 0.005) than overweight and obese children (OR = 3.4, 95% CI 1.3–8.9; P = 0.014 and OR = 3.1, 95% CI 1.7–5.5; P = 1.4 x10− 4, respectively).

Conclusions

The I148M PNPLA3 variant is strongly associated with elevated ALT levels in normal weight and overweight/obese Mexican children. Thus, the M148M genotype may be considered as an important risk factor for liver damage in this population.  相似文献   
120.
During an egg-laying cycle, oviparous animals transfer massive amounts of triglycerides, the major lipid component of very low density lipoprotein (VLDL), from the liver to the developing oocytes. A major stimulus for this process is the rise in estrogen associated with the onset of an egg-laying cycle. In mammals, the microsomal triglyceride transfer protein (MTP) is required for VLDL assembly and secretion. To enable studies to determine if MTP plays a role in basal and estrogen-stimulated VLDL assembly and secretion in an oviparous vertebrate, we have cloned and sequenced the chicken MTP cDNA. This cDNA encodes a protein of 893 amino acids with an N-terminal signal sequence. The primary sequence of chicken MTP is, on average, 65% identical to that of mammalian homologs, and 23% identical to the Drosophila melanogaster protein. We have obtained a clone of chicken embryo fibroblast cells that stably express the avian MTP cDNA and show that these cells display MTP activity as measured by the transfer of a fluorescently labeled neutral lipid. As in mammals, chicken MTP is localized to the endoplasmic reticulum as revealed by indirect immunofluorescence and by the fact that its N-linked oligosaccharide moiety remains sensitive to endoglycosidase H. Endogenous, enzymatically active MTP is also expressed in an estrogen receptor-expressing chicken hepatoma cell line that secretes apolipoprotein B-containing lipoproteins. In this cell line and in vivo, the expression and activity of MTP are not influenced by estrogen. Therefore, up-regulation of MTP in the liver is not required for the increased VLDL assembly during egg production in the chicken. This indicates that MTP is not rate-limiting, even for the massive estrogen-induced secretion of VLDL accompanying an egg-laying cycle.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号