首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5237篇
  免费   751篇
  国内免费   489篇
  6477篇
  2024年   28篇
  2023年   73篇
  2022年   124篇
  2021年   133篇
  2020年   257篇
  2019年   410篇
  2018年   337篇
  2017年   259篇
  2016年   278篇
  2015年   253篇
  2014年   362篇
  2013年   461篇
  2012年   257篇
  2011年   329篇
  2010年   244篇
  2009年   239篇
  2008年   229篇
  2007年   247篇
  2006年   243篇
  2005年   231篇
  2004年   137篇
  2003年   137篇
  2002年   122篇
  2001年   93篇
  2000年   88篇
  1999年   76篇
  1998年   50篇
  1997年   46篇
  1996年   33篇
  1995年   53篇
  1994年   48篇
  1993年   41篇
  1992年   36篇
  1991年   31篇
  1990年   17篇
  1989年   14篇
  1988年   19篇
  1987年   15篇
  1986年   24篇
  1985年   37篇
  1984年   95篇
  1983年   53篇
  1982年   55篇
  1981年   50篇
  1980年   33篇
  1979年   34篇
  1978年   22篇
  1977年   6篇
  1976年   6篇
  1975年   8篇
排序方式: 共有6477条查询结果,搜索用时 9 毫秒
71.
The covalently bonded components of the stem cutin of Psilotum include 16-hydroxyhexadecanoic acid and substantial amounts of hexadecane-1,8,16-triol. While of generally similar composition, leaf cutin of Tmesipteris contains a mixture of hexadecanetriol isomers. The findings suggest that psilotophyte cutins evolved in a different manner from those of other land plants.  相似文献   
72.
Exposure of barley (Hordeum vulgare L. cv. Himalaya) aleurone layers to 40°C for a period of 3 h results in the selective suppression of the synthesis and secretion of hydrolytic enzymes; other normal cellular protein synthesis continues during heat shock. This suppression is correlated with secretory protein mRNA destabilization and the dissociation of stacked ER lamellae during heat shock (Belanger et al. 1986, Proceedings of the National Academy of Sciences USA 83, pp. 1354–1358). In this report we examined the effect of exposure to extended periods of heat shock. If exposure to 40°C was continued for a period of 18 h, the synthesis of α-amylase, the predominant secreted hydrolase, resumed. This was accompanied by increased α-amylase mRNA levels and the reformation of ER lamellae. Though initial exposure (3 h) to 40°C reduced protein secretion to ~10% of that observed in aleurone cells maintained at 25°C, exposure for prolonged periods (16–20 h) permitted the resumption of protein secretion to ~66% of non-heat-shocked control levels. The resumption of normal secretory protein synthesis during prolonged exposure to 40°C was correlated with an increase in the incorporation of [14C]glycerol into phosphatidylcholine and an increase in the ratio of saturated to unsaturated fatty acids in lipids isolated from ER membrane preparations. Increased fatty acid saturation has been demonstrated to enhance thermostability in biological membranes, and such changes in membrane composition may be important to the recovery of secretory protein synthesis at the ER.  相似文献   
73.
74.
The Escherichia coli d-xylose isomerase (d-xylose ketol-isomerase, EC 5.3.1.5) gene, xylA, has been cloned on various E. coli plasmids. However, it has been found that high levels of overproduction of the d-xylose isomerase, the protein product of the xylA gene, cannot be accomplished by cloning the intact gene on high copy-number plasmids alone. This is believed to be due to the fact that the expression of the gene through its natural promoter is highly regulated in E. coli. In order to overcome this, the xylA structural gene has been fused with other strong promoters such as tac and lac, resulting in the construction of a number of fused genes. Analysis of the E. coli transformants containing the fused genes, cloned on high copy-number plasmids, indicated that a 20-fold overproduction of the enzyme can now be obtained. It is expected that overproduction of the enzyme in E. coli can still be substantially improved through additional manipulation with recombinant DNA techniques.  相似文献   
75.
To ensure proper transmission of genetic information, cells need to preserve and faithfully replicate their genome, and failure to do so leads to genome instability, a hallmark of both cancer and aging. Defects in genes involved in guarding genome stability cause several human progeroid syndromes, and an age‐dependent accumulation of mutations has been observed in different organisms, from yeast to mammals. However, it is unclear whether the spontaneous mutation rate changes during aging and whether specific pathways are important for genome maintenance in old cells. We developed a high‐throughput replica‐pinning approach to screen for genes important to suppress the accumulation of spontaneous mutations during yeast replicative aging. We found 13 known mutation suppression genes, and 31 genes that had no previous link to spontaneous mutagenesis, and all acted independently of age. Importantly, we identified PEX19, encoding an evolutionarily conserved peroxisome biogenesis factor, as an age‐specific mutation suppression gene. While wild‐type and pex19Δ young cells have similar spontaneous mutation rates, aged cells lacking PEX19 display an elevated mutation rate. This finding suggests that functional peroxisomes may be important to preserve genome integrity specifically in old cells.  相似文献   
76.
77.
Fire is a crucial event regulating the structure and functioning of many ecosystems. Yet few studies have focused on how fire affects taxonomic and functional diversities of soil microbial communities, along with changes in plant communities and soil carbon (C) and nitrogen (N) dynamics. Here, we analyze these effects in a grassland ecosystem 9 months after an experimental fire at the Jasper Ridge Global Change Experiment site in California, USA. Fire altered soil microbial communities considerably, with community assembly process analysis showing that environmental selection pressure was higher in burned sites. However, a small subset of highly connected taxa was able to withstand the disturbance. In addition, fire decreased the relative abundances of most functional genes associated with C degradation and N cycling, implicating a slowdown of microbial processes linked to soil C and N dynamics. In contrast, fire stimulated above‐ and belowground plant growth, likely enhancing plant–microbe competition for soil inorganic N, which was reduced by a factor of about 2. To synthesize those findings, we performed structural equation modeling, which showed that plants but not microbial communities were responsible for significantly higher soil respiration rates in burned sites. Together, our results demonstrate that fire ‘reboots’ the grassland ecosystem by differentially regulating plant and soil microbial communities, leading to significant changes in soil C and N dynamics.  相似文献   
78.
High‐throughput sequencing has revolutionized population and conservation genetics. RAD sequencing methods, such as 2b‐RAD, can be used on species lacking a reference genome. However, transferring protocols across taxa can potentially lead to poor results. We tested two different IIB enzymes (AlfI and CspCI) on two species with different genome sizes (the loggerhead turtle Caretta caretta and the sharpsnout seabream Diplodus puntazzo) to build a set of guidelines to improve 2b‐RAD protocols on non‐model organisms while optimising costs. Good results were obtained even with degraded samples, showing the value of 2b‐RAD in studies with poor DNA quality. However, library quality was found to be a critical parameter on the number of reads and loci obtained for genotyping. Resampling analyses with different number of reads per individual showed a trade‐off between number of loci and number of reads per sample. The resulting accumulation curves can be used as a tool to calculate the number of sequences per individual needed to reach a mean depth ≥20 reads to acquire good genotyping results. Finally, we demonstrated that selective‐base ligation does not affect genomic differentiation between individuals, indicating that this technique can be used in species with large genome sizes to adjust the number of loci to the study scope, to reduce sequencing costs and to maintain suitable sequencing depth for a reliable genotyping without compromising the results. Here, we provide a set of guidelines to improve 2b‐RAD protocols on non‐model organisms with different genome sizes, helping decision‐making for a reliable and cost‐effective genotyping.  相似文献   
79.
80.
Organs‐on‐chip (OoCs) are catching on as a promising and valuable alternative to animal models, in line with the 3Rs initiative. OoCs enable the creation of three‐dimensional (3D) tissue microenvironments with physiological and pathological relevance at unparalleled precision and complexity, offering new opportunities to model human diseases and to test the potential therapeutic effect of drugs, while overcoming the limited predictive accuracy of conventional 2D culture systems. Here, we present a liver‐on‐a‐chip model to investigate the effects of two naturally occurring polyphenols, namely quercetin and hydroxytyrosol, on nonalcoholic fatty liver disease (NAFLD) using a high‐content analysis readout methodology. NAFLD is currently the most common form of chronic liver disease; however, its complex pathogenesis is still far from being elucidated, and no definitive treatment has been established so far. In our experiments, we observed that both polyphenols seem to restrain the progression of the free fatty acid‐induced hepatocellular steatosis, showing a cytoprotective effect due to their antioxidant and lipid‐lowering properties. In conclusion, the findings of the present work could guide novel strategies to contrast the onset and progression of NAFLD.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号