首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5896篇
  免费   848篇
  国内免费   590篇
  2024年   20篇
  2023年   96篇
  2022年   146篇
  2021年   177篇
  2020年   296篇
  2019年   445篇
  2018年   371篇
  2017年   298篇
  2016年   304篇
  2015年   307篇
  2014年   429篇
  2013年   541篇
  2012年   293篇
  2011年   372篇
  2010年   273篇
  2009年   254篇
  2008年   253篇
  2007年   287篇
  2006年   276篇
  2005年   256篇
  2004年   167篇
  2003年   167篇
  2002年   133篇
  2001年   116篇
  2000年   95篇
  1999年   89篇
  1998年   60篇
  1997年   49篇
  1996年   34篇
  1995年   57篇
  1994年   51篇
  1993年   47篇
  1992年   36篇
  1991年   33篇
  1990年   20篇
  1989年   16篇
  1988年   20篇
  1987年   16篇
  1986年   25篇
  1985年   38篇
  1984年   96篇
  1983年   53篇
  1982年   55篇
  1981年   52篇
  1980年   33篇
  1979年   34篇
  1978年   23篇
  1977年   6篇
  1976年   6篇
  1975年   9篇
排序方式: 共有7334条查询结果,搜索用时 15 毫秒
991.
The achievement of the superior rate capability and cycling stability is always the pursuit of sodium‐ion batteries (SIBs). However, it is mainly restricted by the sluggish reaction kinetics and large volume change of SIBs during the discharge/charge process. This study reports a facile and scalable strategy to fabricate hierarchical architectures where TiO2 nanotube clusters are coated with the composites of ultrafine MoO2 nanoparticles embedded in carbon matrix (TiO2@MoO2‐C), and demonstrates the superior electrochemical performance as the anode material for SIBs. The ultrafine MoO2 nanoparticles and the unique nanorod structure of TiO2@MoO2‐C help to decrease the Na+ diffusion length and to accommodate the accompanying volume expansion. The good integration of MoO2 nanoparticles into carbon matrix and the cable core role of TiO2 nanotube clusters enable the rapid electron transfer during discharge/charge process. Benefiting from these structure merits, the as‐made TiO2@MoO2‐C can deliver an excellent cycling stability up to 10 000 cycles even at a high current density of 10 A g?1. Additionally, it exhibits superior rate capacities of 110 and 76 mA h g?1 at high current densities of 10 and 20 A g?1, respectively, which is mainly attributed to the high capacitance contribution.  相似文献   
992.
Although lithium sulfur batteries (LSBs) have attracted much interest owing to their high energy densities, synthesis of high‐rate cathodes and understanding their volume expansion behavior still remain challenging. Herein, electrospinning is used to prepare porous carbon nanofiber (PCNF) hosts, where both the pore volume and surface area are tailored by optimizing the sacrificial agent content and the activation temperature. Benefiting from the ameliorating functional features of high electrical conductivity, large pore volume, and Li ion permselective micropores, the PCNF/A550/S electrode activated at 550 °C exhibits a high sulfur loading of 71 wt%, a high capacity of 945 mA h g?1 at 1 C, and excellent high‐rate capability. The in situ transmission electron microscope examination reveals that the lithiation product, Li2S, is contained within the electrode with only ≈35% volume expansion and the carbon host remains intact without fracture. In contrast, the PCNF/A750/S electrode with damaged carbon spheres exhibits sulfur sublimation, a larger volume expansion of over 61%, and overflowing of Li2S, a testament to its poor cyclic stability. These findings provide, for the first time, a new insight into the correlation between volume expansion and electrochemical performance of the electrode, offering a potential design strategy to synthesize high‐rate and stable LSB cathodes.  相似文献   
993.
Nowadays, millimeter scale power sources are key devices for providing autonomy to smart, connected, and miniaturized sensors. However, until now, planar solid state microbatteries do not yet exhibit a sufficient surface energy density. In that context, architectured 3D microbatteries appear therefore to be a good solution to improve the material mass loading while keeping small the footprint area. Beside the design itself of the 3D microbaterry, one important technological barrier to address is the conformal deposition of thin films (lithiated or not) on 3D structures. For that purpose, atomic layer deposition (ALD) technology is a powerful technique that enables conformal coatings of thin film on complex substrate. An original, robust, and highly efficient 3D scaffold is proposed to significantly improve the geometrical surface of miniaturized 3D microbattery. Four functional layers composing the 3D lithium ion microbattery stacking has been successfully deposited on simple and double microtubes 3D templates. In depth synchrotron X‐ray nanotomography and high angle annular dark field transmission electron microscope analyses are used to study the interface between each layer. For the first time, using ALD, anatase TiO2 negative electrode is coated on 3D tubes with Li3PO4 lithium phosphate as electrolyte, opening the way to all solid‐state 3D microbatteries. The surface capacity is significantly increased by the proposed topology (high area enlargement factor – “thick” 3D layer), from 3.5 μA h cm?2 for a planar layer up to 0.37 mA h cm?2 for a 3D thin film (105 times higher).  相似文献   
994.
995.
996.
997.
For the first time, a fast heating–cooling process is reported for the synthesis of carbon‐coated nickel (Ni) nanoparticles on a reduced graphene oxide (RGO) matrix (nano‐Ni@C/RGO) as a high‐performance H2O2 fuel catalyst. The Joule heating temperature can reach up to ≈2400 K and the heating time can be less than 0.1 s. Ni microparticles with an average diameter of 2 µm can be directly converted into nanoparticles with an average diameter of 75 nm. The Ni nanoparticles embedded in RGO are evaluated for electro‐oxidation performance as a H2O2 fuel in a direct peroxide–peroxide fuel cell, which exhibits an electro‐oxidation current density of 602 mA cm?2 at 0.2 V (vs Ag/AgCl), ≈150 times higher than the original Ni microparticles embedded in the RGO matrix (micro‐Ni/RGO). The high‐temperature, fast Joule heating process also leads to a 4–5 nm conformal carbon coating on the surface of the Ni nanoparticles, which anchors them to the RGO nanosheets and leads to an excellent catalytic stability. The newly developed nano‐Ni@C/RGO composites by Joule heating hold great promise for a range of emerging energy applications, including the advanced anode materials of fuel cells.  相似文献   
998.
999.
1000.
目的:探讨牙科高速气涡轮切割手机配合阻生牙专用加长裂钻拔牙对口腔外科门诊需要拔除下颌阻生第三磨牙患者的影响。方法:选取我院收治的59例需要拔除下颌阻生第三磨牙患者,按照随机数字表法将所有患者随机分为试验组和对照组两组。其中试验组患者采用牙科高速气涡轮切割手机辅助阻生牙专用加长裂钻进行拔牙,而对照组患者则采取传统的劈骨分牙法,通过两组患者的术后复诊对患者的下唇麻木、断根等发生率以及张口受限、疼痛、肿胀等情况进行评价。结果:根据我院对两组患者的术中情况及术后并发症情况进行统计分析,结果显示试验组患者的手术时间为(25.68±6.83)min,明显低于对照组患者[(35.23±14.23)min,t=3.962,P=0.000]。试验组患者中仅有1例术后出现断根情况,无其他并发症出现;而对照组患者术后则有3例断根情况和1例下唇麻木患者(后逐渐缓解)、1例下颌关节疼痛以及1例舌侧骨板骨折患者。根据我院对两组患者术后1d的临床资料进行统计分析,结果显示试验组患者术后1d面部肿胀程度明显比对照组患者轻(P0.05);试验组患者的疼痛情况明显优于对照组患者(P0.05);试验组患者的张口受限程度明显比对照组患者轻(P0.05)。结论:牙科高速气涡轮切割手机配合阻生牙专用加长裂钻拔牙对口腔外科门诊需要拔除下颌阻生第三磨牙患者具有较好的临床治疗效果,值得在临床上加以广泛推广和运用。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号