首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5630篇
  免费   815篇
  国内免费   731篇
  2024年   18篇
  2023年   90篇
  2022年   144篇
  2021年   161篇
  2020年   284篇
  2019年   450篇
  2018年   377篇
  2017年   301篇
  2016年   281篇
  2015年   284篇
  2014年   384篇
  2013年   493篇
  2012年   278篇
  2011年   340篇
  2010年   257篇
  2009年   269篇
  2008年   256篇
  2007年   273篇
  2006年   264篇
  2005年   241篇
  2004年   158篇
  2003年   157篇
  2002年   128篇
  2001年   105篇
  2000年   103篇
  1999年   97篇
  1998年   64篇
  1997年   56篇
  1996年   43篇
  1995年   67篇
  1994年   60篇
  1993年   53篇
  1992年   45篇
  1991年   42篇
  1990年   23篇
  1989年   21篇
  1988年   25篇
  1987年   20篇
  1986年   31篇
  1985年   43篇
  1984年   100篇
  1983年   55篇
  1982年   59篇
  1981年   52篇
  1980年   37篇
  1979年   36篇
  1978年   23篇
  1977年   7篇
  1976年   6篇
  1975年   9篇
排序方式: 共有7176条查询结果,搜索用时 31 毫秒
71.
Photosystem II (PSII) is considered to be one of the most thermolabile aspects of photosynthesis. In vivo measurements of chlorophyll fluorescence and photosynthetic oxygen evolution in 25°C-grown potato leaves (cv. Haig) indicated that the threshold temperature Tc above which PSII denatures was indeed rather low–about 38°C–with temperatures higher than Tc causing a rapid and irreversible loss of PSII activity. The present study demonstrates the existence of adaptive processes which rapidly adjust the in vivo thermal stability of PSII in response to temperature increase. Transfer of potato leaves from 25°C to temperatures slightly lower than Tc (between 30 and 35°C) was observed to cause an upward shift of the Tc value without any appreciable loss of PSII activity. This increase in PSII thermotolerance was substantial (around +5°C in the Haig cultivar), rapid (with a half-time of ~20 min) and slowly reversible at 25°C (>24h). As a consequence, high temperatures (e.g. 40°C) which caused a complete and irreversible inhibition of the PSII function had very little effect in 35°C-treated leaves, thus suggesting that the above-described PSII changes could be of prime importance for the plant's behaviour in the field. Accordingly, the rise in Tc at 35°C was much larger (+8°C) in Sahel, a stress-resistant potato variety, than in the heat-sensitive Haig cultivar.  相似文献   
72.
Chickpeas were grown with or without nitrate nitrogen feeding, or nodulated with Rhizobium leguminosarum. High [40°C day, 25°C night (HT)] and moderate [25°C day, 177°C night (LT)] temperature regimes were employed during growth. Growth rates, photosynthetic capacity and enzymes of carbon and nitrogen metabolism were monitored to assess the acclimatory capacity of the chickpea. Initial growth rates were stimulated by high temperatures, particularly in nitrate-fed and nodulated plants. Older HT plants had fewer laterals, smaller leaves, and fewer flowers were produced than in LT plants. There was some indication of an acclimation of photosynthesis to high temperatures and this was independent of nitrogen supply. Rubisco activity was increased by high growth temperatures. However, HT plants also had higher transpiration rates and lower water use efficiency than LT plants both in respective growth conditions and when compared in a common condition. High temperatures reduced shoot nitrate reductase activity but had little effect on root activity, which was the same if not greater than activity in LT roots. The amino acid, asparagine, was found at high concentrations in all treatments. Concentrations were maintained throughout growth in HT plants but declined with age in LT plants.  相似文献   
73.
Flash-induced, fast (t 1/2 1 ms), reversible reduction of the high potential cytochrome b-559 (cyt b-559HP) was observed in chloroplasts in the presence of 2 M protonophore, FCCP (carbonylcyanide p-trifluoromethoxyphenylhydrazone), CCCP (carbonylcyanide 3-chlorophenylhydrazone) or SF 6847 (2,6-di-(t-butyl)-4-(2,2-dicyanovinyl)phenol). These protonophores promote autooxidation of cyt b-559HP in the dark (Arnon and Tang 1988, Proc Natl Acad Sci USA 85: 9524). No fast photoreduction could, however, be observed if the molecules were oxidized with ferricyanide in the absence of protonophores. This suggests that the molecules must be deprotonated to be capable for fast photoreduction.Photoreduction of cyt b-559HP was largely insensitive to DBMIB (2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone), but was inhibited by DCMU (3-(3,4-dichlorophenyl)-1,1-dimethylurea). With a train of flashes, no oscillation could be observed in the amplitudes of photoreduction. These data strongly suggest that cyt b-559HP is reduced by the semireduced secondary quinone acceptor (QB ) of Photosystem 2.Abbreviations ADRY- acceleration of the deactivation reactions of the water-splitting enzyme system Y of photosynthesis - Ant 2p- 2-(3-chloro-4-trifluoromethyl)anilino-3,5-dinitrothiophene - cyt- cyto-chrome - CCCP- carbonylcyanide 3-chlorophenylhydrazone - DBMIB- 2,5-dibromo-3-methyl-6-iso-propyl-p-benzoquinone - DCMU- 3-(3,4-dichlorophenyl)-1,1-dimehtylurea - FCCP- carbonylcyanide p-trifluoromethoxyphenylhydrazone - FeCy- ferricyanide - HP- high potential form - HQ- hydroquinone - PQ- plastoquinone - PS 2- Photosystem 2 - SF 6847- 2,6-di-(t-butyl)-4-(2,2-dicyanovinyl)-phenol  相似文献   
74.
NaN3能抑制新鲜菠菜叶片叶绿体经DTT和光激活的Mg2+-ATPase活力。这种抑制属非竞争性抑制。NaN3还能降低新鲜菠菜叶片叶绿体的反映光合磷酸化高能态的毫秒延迟发光和减少反映类爱体膜质子吸收变化的叶绿体的9-氨基吖啶的荧光猝灭。菠菜叶片经低温贮存几天后其叶绿体的超微结构发生变化,NaN3对叶绿体的上述影响就消失或基本消失。本实验指出NaN3是新鲜叶片叶绿体H+-ATPase的一个强有力的抑制剂。其影响受叶绿体制剂的内源无机磷酸盐含量调节。  相似文献   
75.
本文报道海拔3417m和4280m地区世居藏族和移居汉族青少年运动状态下心肺功能的对比研究。结果显示:3417m和4280m世居藏族的最大氧耗量、无氧阈值及最大心输出量都明显大于汉族,血氧饱和度(Sao2)随运动负荷的增加而降低。海拔3417m藏、汉族的△Sao2分别为7.46%和10.03%,4280m处为8.57%和13.75%,最大心率随海拔升高而下降。研究提示,藏族青少年有较高的最大有氧能力,反映了他们对低氧环境的适应优势。  相似文献   
76.
The disease control efficacy of quarantine heat treatments developed for fruit fly disinfestation in mangoes cv. Kensington Pride was evaluated in this study. Heat was applied using high humidity (>95% r.h.) hot air (HHHA) at temperatures ranging from 47–49°C. Anthracnose, caused by Colletotrichum gloeosporioides, was well controlled in mangoes heated to a core temperature of 46°C, 47°C or 48°C for 24, 10 or 8 min respectively, prior to ripening at 23°C for 16 days. Stem end rot, caused by Dothiorella dominicana and Lasiodiplodia theobromae, was not satisfactorily controlled by these treatments. In a subsequent experiment, fruit were immersed in a hot benomyl (0.5 g a.i. litre“1 at 52°C for 5 min) or unheated prochloraz (0.25 ml a.i. litre1 at 28°C for 30 s) dip before or after the application of HHHA (core temperature of 47°C for 10 min). During storage at 23°C for 15 days, the incidence of stem end rot was reduced by HHHA alone, although immersion in hot benomyl either before or after HHHA treatment greatly improved stem end rot control. HHHA treatment (core temperature of 46.5°C for 10 min) alone reduced the incidence of anthracnose in mangoes stored at 13°C for 14 days prior to ripening at 22°C, although a combination treatment consisting of HHHA and either hot benomyl or unheated prochloraz gave complete control of anthracnose under these storage conditions. HHHA treatment alone gave no control of stem end rot in mangoes stored at 13°C prior to ripening at 22°C. A supplementary hot benomyl treatment was required for acceptable control of this disease in cool-stored mangoes. The development of yellow skin colour in fruit was accelerated by HHHA treatment.  相似文献   
77.
Basic issues in the culture of the extremely thermophilic archaeon, Methanothermus fervidus, have been investigated, including culture medium formulation, substrate yield and product yield coefficient, growth rate and stoichiometry, and H(2) uptake kinetics. The pH optimum for growth of this organism was estimated at 6.9. Growth medium buffered with PIPES instead of bicarbonate supported both increased growth rate and maximum biomass concentration. Substitution of titanium(III) citrate for the reducing agent sodium sulfide improved culture performance as well. However, independent adjustment of iron and nickel concentrations from 11 to 111 muM, respectively, and carbon dioxide partial pressure from 5 to 20 psia did not impact the culture of M. fervidus significantly. An elemental balance approach was utilized to aid in design of a defined medium to support growth to a target maximum biomass concentration of at least 1.0 g dry wt/L. The growth of this organism was limited by H(2) availability in this reformulated culture medium. The maximum growth rate and biomass concentration achieved in anaerobic vials with the defined medium was 0.16 h(-1) and 0.74 g dry wt/L, respectively. This maximum biomass concentration was a 72% improvement over that obtained with a literature-based defined medium. The Monod parameter, K(s), with H(2) as limiting substrate, was estimated at 1.1 +/- 0.4 psia (55 +/- 20 muM in the broth), based on a H(2) consumption study. Representative values for the substrate yield, Y(X/CO(2) ), and product yield coefficient, Y(CH(4)/) (X), were determined experimentally to be 1.78 +/- 0.04 g dry wt/mol CO(2), and 0.52 +/- 0.01 mol CH(4)/g dry wt, respectively. A bench-scale fermentation system suitable for the culture of extremely thermophilic anaerobes was designed and constructed and proved effective for the culture of M. fervidus. (c) 1993 Wiley & Sons, Inc.  相似文献   
78.
Bio-oxidation has proved to be a viable process for the oxidative pretreatment of refractory gold-bearing sulfides. Generally, the oxidation rate is maximal at 20% solids for high sulfide content materials [ca. 30% sulfur]. Low grade ores [1% sulfur] have been successfully oxidized at 55% solids, indicating a link between the sulfide grade of the material and the optimal solids concentration for operation. Concentrations of high solids have been reported to lower oxidation rates, increase lag times, and decrease the ultimate extent of oxidation. This review discusses the various factors that have been proposed as causes of these phenomena. The factors include oxygen and carbon dioxide availability, low bacteria-solids ratio; mechanical damage or inhibition of the bacteria, inhibition of bacterial attachment, and the buildup of toxic leach products or other detrimental substances such as some flotation reagents. (c) 1993 John Wiley & Sons, Inc.  相似文献   
79.
Reduction in nutrient loss during dialysis cultivation of Escherichia coli on a glycerol medium was investigated. A dialysis reactor with an inner fermentation and an outer dialysis chamber was used. Aerobic condition was maintained by limiting the glycerol feed rate to an optimum value which was estimated from the oxygen requirements for glycerol oxidation and oxygen transfer capacity of the reactor. High reduction in nutrient loss was achieved by using water as the dialyzing fluid. However, osmotic movement of water from the dialysis to the fermentation chamber was observed, and the final cell concentration was low. With a nutrient-split feeding strategy (feeding glycerol directly to the fermentation chamber and dialyzing with salt solution), glycerol loss was small, there was no osmotic flux of water to the fermentation chamber, and the cell concentration was high. Both glycerol and salt loss could be avoided, and a cell concentration of 170 g/L was obtained when the dialysis process was substituted by addition of XAD adsorbents to the dialysis chamber. Application of this nutrient-split feeding strategy to cell cultivation in a stirred tank reactor, coupled with dialysis in external dialyzer modules, resulted in low cell concentrations. (c) 1993 Wiley & Sons, Inc.  相似文献   
80.
Human plasmain vitro inhibits the growth of coagulase negative staphylococci,S. epidermidis, which may be pathogenic in the immunocompromised host. To determine the antimicrobial components, serum was fractionated by column chromatography, which revealed that elution areas where lipoproteins can be yielded had high antimicrobial activity againstS. epidermidis. Therefore, lipoprotein fractions, including very low density lipoprotein (VLDL), low density lipoprotein (LDL) and high density lipoprotein (HDL), were separated by ultracentrifugation and incubated withS. epidermidis. All 3 lipoprotein fractions suppressed bacterial growth within the first 3 h but VLDL enhanced bacterial growth after 9 h of incubation compared with the control. HDL, however, inhibited bacterial growth throughout 21 h of incubation.To confirm these results, serum from healthy volunteers was separated by ion exchange column chromatography and again by HPLC to purify the antimicrobial fraction. In the protein analysis with gradient polyacrylamide-SDS gel, apolipoprotein Al (apo Al), which is a major apolipoprotein of HDL, was detected in the antimicrobial fraction. Therefore, this fraction was loaded onto an immunoaffinity column coupled with the anti-apo Al monoclonal antibody (Mab). Unbound fraction had no antimicrobial activity, but anti-S. epidermidis activity was recovered from the bound fraction which consisted mainly of apo Al, All and apo C in protein composition.These results indicated that the antimicrobial activity was associated with the apo Al-containing lipoprotein particles (HDL). This property of HDL may directly affect bacterial growth and promote the self-defense mechanisms of normal and immunocompromised individuals.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号