首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4480篇
  免费   216篇
  国内免费   136篇
  2024年   7篇
  2023年   47篇
  2022年   83篇
  2021年   140篇
  2020年   98篇
  2019年   110篇
  2018年   122篇
  2017年   87篇
  2016年   104篇
  2015年   155篇
  2014年   152篇
  2013年   289篇
  2012年   132篇
  2011年   142篇
  2010年   130篇
  2009年   158篇
  2008年   190篇
  2007年   176篇
  2006年   183篇
  2005年   188篇
  2004年   161篇
  2003年   183篇
  2002年   183篇
  2001年   133篇
  2000年   102篇
  1999年   127篇
  1998年   125篇
  1997年   112篇
  1996年   89篇
  1995年   102篇
  1994年   89篇
  1993年   77篇
  1992年   58篇
  1991年   55篇
  1990年   44篇
  1989年   49篇
  1988年   58篇
  1987年   37篇
  1986年   37篇
  1985年   45篇
  1984年   71篇
  1983年   54篇
  1982年   45篇
  1981年   27篇
  1980年   22篇
  1979年   22篇
  1978年   8篇
  1977年   11篇
  1976年   5篇
  1974年   3篇
排序方式: 共有4832条查询结果,搜索用时 109 毫秒
81.
Abstract: 4-Aminopyridine evokes repetitive firing of synaptosomes and exocytosis of glutamate by inhibiting a dendrotoxin-sensitive K+ channel responsible for stabilizing the membrane potential. We have shown previously that activation of protein kinase C (PKC) by high concentrations of phorbol ester (4β-phorbol dibutyrate) can increase release by inhibiting a dendrotoxin-insensitive ion channel, whereas the metabotropic glutamate receptor (mGluR) agonist (1 S ,3 R )-1-aminocyclopentane-1,3-dicarboxylate [(1 S ,3 R )-ACPD] mimics the action of 4β-phorbol dibutyrate, but only in the presence of 2 µ M arachidonic acid (AA). In this article, we investigate the role of AA. AA plus (1 S ,3 R )-ACPD is without effect on KCl-induced glutamate exocytosis, indicating that the regulatory pathway acts upstream of the release-coupled Ca2+ channel or Ca2+-secretion coupling. Diacylglycerol concentrations are greatly enhanced by (1 S ,3 R )-ACPD alone, independently of AA, indicating that AA acts downstream of phospholipase C. Myristoylated alanine-rich C kinase substrate (MARCKS) is the major presynaptic substrate for PKC. mGluR activation by (1 S ,3 R )-ACPD enhances phosphorylation of MARCKS, but only in the presence of AA. These results strongly suggest that AA acts on presynaptic PKC synergistically with diacylglycerol generated by the phospholipase-coupled mGluR, consistent with the known behaviour of certain purified PKC isoforms. The magnitude of the effects observed in a population of rat cerebrocortical synaptosomes suggests that this is a major mechanism regulating the release of the brain's dominant excitatory neurotransmitter and supports the concept that AA, or a related compound with a similar locus of action, may in certain circumstances play a role in synaptic plasticity.  相似文献   
82.
Abstract: We studied the effect of treating rats with lithium salts on the content and in vitro phosphorylation rate of the astrocyte cell marker, glial fibrillary acidic protein (GFAP), in brain slices. Rats were fed a diet incorporating lithium chloride until the concentration of Li+ in serum reached 0.6–1.2 m M , a range similar to that achieved in clinical practice. Hippocampal tissue was analyzed for immunoreactive GFAP by a dot assay, and slices of hippocampus and caudate nucleus were labeled with [32P]-phosphate to determine the in vitro rate of phosphorylation of GFAP. Compared with controls, the level of immunoreactive GFAP in the hippocampus from lithium-treated rats was increased 34%, and GFAP in hippocampal slices incorporated 39% more 32P. This effect of lithium was apparently not confined to the hippocampus because the in vitro rate of phosphorylation of GFAP in caudate slices was also increased in the treated rats.  相似文献   
83.
The inactivation of photolyzed rhodopsin requires phosphorylation of the receptor and binding of a 48-kDa regulatory protein, arrestin. By binding to phosphorylated photolyzed rhodopsin, arrestin inhibits G protein (Gt) activation and blocks premature dephosphorylation, thereby preventing the reentry of photolyzed rhodopsin into the phototransduction pathway. In this study, we isolated a 44-kDa form of arrestin, called p44, from fresh bovine rod outer segments and characterized its structure and function. A partial primary structure of p44 was established by a combination of mass spectrometry and automated Edman degradation of proteolytic peptides. The amino acid sequence was found to be identical with arrestin, except that the C-terminal 35 residues (positions 370-404) are replaced by a single alanine. p44 appeared to be generated by alternative mRNA splicing, because intron 15 interrupts within the nucleotide codon for 369Ser in the arrestin gene. Functionally, p44 binds avidly to photolyzed or phosphorylated and photolyzed rhodopsin. As a consequence of its relatively high affinity for bleached rhodopsin, p44 blocks Gt activation. The binding characteristics of p44 set it apart from tryptic forms of arrestin (truncated at the N- and C-termini), which require phosphorylation of rhodopsin for tight binding. We propose that p44 is a novel splice variant of arrestin that could be involved in the regulation of Gt activation.  相似文献   
84.
Newly synthesized neurofilament proteins become highly phosphorylated within axons. Within 2 days after intravitreously injecting normal adult mice with [32P]orthophosphate, we observed that neurofilaments along the entire length of optic axons were radiolabeled by a soluble32P-carrier that was axonally transported faster than neurofilaments.32P-incorporation into neurofilament proteins synthesized at the time of injection was comparatively low and minimally influenced the labeling pattern along axons.32P-incorporation into axonal neurofilaments was considerably higher in the middle region of the optic axons. This characteristic non-uniform distribution of radiolabel remained nearly unchanged for at least 22 days. During this interval, less than 10% of the total32P-labeled neurofilaments redistributed from the optic nerve to the optic tract. By contrast, newly synthesized neurofilaments were selectively pulse-labeled in ganglion cell bodies by intravitreous injection of [35S]methionine and about 60% of this pool translocated by slow axoplasmic transport to the optic tract during the same time interval. These findings indicate that the steady-state or resident pool of neurofilaments in axons is not identical to the newly synthesized neurofilament pool, the major portion of which moves at the slowest rate of axoplasmic transport. Taken together with earlier studies, these results support the idea that, depending in part on their phosphorylation state, transported neurofilaments can interact for short or very long periods with a stationary but dynamic neurofilament lattice in axons.Special issue dedicated to Dr. Sidney Ochs.  相似文献   
85.
The effects of phorbol ester and forskolin on the net phosphorylation and turnover of P0 phosphate groups was studied in normal and exprimentally diabetic rats. In sciatic nerve segments isolated from normal rats and incubated with [32P]-inorganic phosphate, phosphorylation of the major peripheral myelin protein, P0, was increased 2–5 fold in a time and dose-dependent manner by phorbol 12,13 dibutyrate (PDB). This increase was blocked by the protein kinase inhibitors, H-7 and staurosporine. Both the basal and PDB-stimulated phosphorylation of P0 were significantly greater in segments of sciatic nerve from streptozotocin-induced diabetic rats. Prolonged exposure of nerve segments to PDB abolished the stimulated phosphorylation of P0 and immunoblots of nerve proteins revealed a decrease in the content of the protein kinase C -isoform. The adenylate cyclase activator, forskolin, had no affect on the PDB-stimulated phosphorylation of P0 in normal nerve but decreased phosphorylation in diabetic nerve. To measure turnover of P0 phosphate groups, nerves were incubated with32P and incorporated label was then chased in radioactivity-free medium for up to 4 hours. P0 from normal nerve prelabeled under basal conditions lost 25% of its radioactivity during this time. In contrast, nearly all of the additional phosphate groups prelabeled in the presence of PDB disappeared after 2 hours of chase. P0 phosphate groups from diabetic nerve displayed similar turnover kinetics. When forskolin was added to the chase medium, the turnover of P0 phosphate moieties was accelerated in normal, but not in diabetic nerve. These findings clearly establish a prominent role for protein kinase C in P0 phosphorylation, provide evidence for heterogeneous turnover of P0 phosphate groups and suggest that cyclic AMP-mediated processes may modulate P0 phosphorylation. Further, these results indicate that the metabolism of P0 phosphate moieties is perturbed in nerve from diabetic animals.Special issue dedicated to Dr. Marjoris B. Lees.  相似文献   
86.
Abstract A Bacillus subtilis response regulator, DegU9, carrying an amino acid alteration caused by the degU9 (Hy) mutation was partially purified, and phosphorylation and dephosphorylation of the protein was studied. The extent of phosphorylation was not as high as the level attained with wild-type DegU, but the DegU9-phosphate once formed was more stable than the wild-type DegU-phosphate. An in vivo study with a degU9 mutant showed that degS was necessary for the overproduction of exoproteases. These results suggest that phosphorylation is necessary for the mutant DegU9 to exert its effect and that the higher stability of phosphorylated DegU9 is responsible for the overproulation phenotype.  相似文献   
87.
Digitonin was applied to permeabilize the plasma membrane of Bothrops alternatus erythrocytes to study respiration, oxidative phosphorylation and Ca2+ transport by mitochondria in situ. These mitochondria oxidized added NAD-linked substrates, succinate and N,N,N, N-tetramethyl-p-phenylenediamine. Respiration was sensitive to rotenone and cyanide but not to antimycin A. This indicates that Bothrops mitochondria possess the respiratory complexes NADH-ubiquinone, succinate-ubiquinone, and ferrocytochrome c-oxygen oxidoreductases, although the lack of sensitivity to antimycin A raises doubt about the composition of the ubiquinol cytochrome c-reductase complex. An ability to build up and sustain a membrane potential was documented by their capacity to accumulate tetraphenylphosphonium and Ca2+ through an uncoupler-sensitive mechanism. Addition of ADP caused a transient decrease in the membrane potential, indicating that this is the predominant driving force for ATP synthesis as in most types of mitochondria. Uncoupling of phosphorylation from the oxidative process increased hemoglobin O2 affinity, which suggests that ATP production by mitochondria may participate in modulation of O2 transport by hemoglobin.Abbreviations membrane potential - BAE Bothrops alternatus erythrocytes - DNP 2,4-dinitrophenol - DPG 2,3-diphosphoglycerate - EGTA ethyleneglycol tetra-acetic acid - FCCP carbonylcyanide p-trifloromethoxyphenylhydrazone - TMPD N,N,N,N-tetramethyl-p-phenylenediamine - TPP+ tetraphenylphosphonium - TRIS tris-(hydroxymethyl)aminomethane  相似文献   
88.
Ca,phospholipid-dependent (PKC) andcAMP-dependent (PKA) protein kinases phosphorylate the -subunit of the Na,K-ATPase from duck salt gland with the incorporation of 0.3 and 0.5 mol32P/mol of -subunit, respectively. PKA (in contrast to PKC) phosphorylates the -subunit only in the presence of detergents. Limited tryptic digestion of the Na,K-ATPase phosphorylated by PKC demonstrates that32P is incorporated into the N-terminal 41-kDa fragment of the -subunit. Selective chymotrypsin cleavage of phosphorylated enzyme yields a 35-kDa radioactive fragment derived from the central region of the -subunit molecule. These findings suggest that PKC phosphorylates the -subunit of the Na,K-ATPase within the region restricted by C3 and T1 cleavage sites.  相似文献   
89.
The electronic transitions of the two heme groups of cytochromec oxidase have been resolved by application of second-derivative and cryogenic absorption spectroscopy. Both methods reveal a splitting of the ferrocytochromea Soret transition into two features at 443 and 450 nm. The relative intensity of the 450 nm feature appears to depend on the ligation state of cytochromea 3, the solution pH, and complex formation with cytochromec. The structural origin and mechanistic significance of this second Soret transition of cytochromea are discussed in terms of the electron transfer and proton translocation activities of the enzyme.Dedicated to the memory of James Carl Copeland.  相似文献   
90.
Wheat leaves were exposed to light treatments that excite preferentially Photosystem I (PS I) or Photosystem II (PS II) and induce State 1 or State 2, respectively. Simultaneous measurements of CO2 assimilation, chlorophyll fluorescence and absorbance at 820 nm were used to estimate the quantum efficiencies of CO2 assimilation and PS II and PS I photochemistry during State transitions. State transitions were found to be associated with changes in the efficiency with which an absorbed photon is transferred to an open PS II reaction centre, but did not correlate with changes in the quantum efficiencies of PS II photochemistry or CO2 assimilation. Studies of the phosphorylation status of the light harvesting chlorophyll protein complex associated with PS II (LHC II) in wheat leaves and using chlorina mutants of barley which are deficient in this complex demonstrate that the changes in the effective antennae size of Photosystem II occurring during State transitions require LHC II and correlate with the phosphorylation status of LHC II. However, such correlations were not found in maize leaves. It is concluded that State transitions in C3 leaves are associated with phosphorylation-induced modifications of the PS II antennae, but these changes do not serve to optimise the use of light absorbed by the leaf for CO2 assimilation.Abbreviations Fm, Fo, Fv maximal, minimal and variable fluorescence yields - Fm, Fv maximal and variable fluorescence yields in a light adapted state - LHC II light harvesting chlorophyll a/b protein complex associated with PS II - qP photochemical quenching - A820 light-induced absorbance change at 820 nm - PS I, PS II relative quantum efficiencies of PS I and PS II photochemistry - CO 2 quantum yield of CO2 assimilation  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号