首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
  2014年   1篇
  2013年   1篇
  2008年   1篇
  2004年   2篇
  2002年   2篇
  2001年   1篇
  1999年   1篇
  1997年   1篇
  1990年   1篇
排序方式: 共有11条查询结果,搜索用时 15 毫秒
11.
Peptides with antimicrobial properties are present in most if not all plant species. All plant antimicrobial peptides isolated so far contain even numbers of cysteines (4, 6, or 8), which are all pairwise connected by disulfide bridges, thus providing high stability to the peptides. Based on homologies at the primary structure level, plant antimicrobial peptides can be classified into distinct families including thionins, plant defensins, lipid transfer proteins, and he vein- and knottin-type antimicrobial peptides. Detailed three-dimensional structure information has been obtained for one or more members of these peptide families. All antimicrobial peptides studied thus far appear to exert their antimicrobial effect at the level of the plasma membrane of the target microorganism, but the different peptide types are likely to act via different mechanisms. Antimicrobial peptides can occur in all plant organs. In unstressed organs, antimicrobial peptides are usually most abundant in the outer cell layer lining the organ, which is consistent with a role for the antimicrobial peptides in constitutive host defense against microbial invaders attacking from the outside. Thionins are predominantly located intracellularly but are also found in the extracellular space, whereas most plant defensins and lipid transfer proteins are deposited exclusively in the extracellular space. In a number of plant species, a strong induction of genes expressing either thionins, plant defensins, or lipid transfer proteins has been observed on infection of the leaves by microbial pathogens. Hence, antimicrobial peptides can also take part in the inducible defense response of plants. Constitutive expression in transgenic plants of heterologous antimicrobial peptide genes has been achieved, which in some cases has led to enhanced resistance to particular microbial plant pathogens.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号