首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10020篇
  免费   493篇
  国内免费   941篇
  2024年   33篇
  2023年   199篇
  2022年   265篇
  2021年   328篇
  2020年   329篇
  2019年   282篇
  2018年   289篇
  2017年   221篇
  2016年   297篇
  2015年   430篇
  2014年   453篇
  2013年   559篇
  2012年   308篇
  2011年   354篇
  2010年   341篇
  2009年   447篇
  2008年   438篇
  2007年   436篇
  2006年   458篇
  2005年   446篇
  2004年   407篇
  2003年   326篇
  2002年   386篇
  2001年   252篇
  2000年   235篇
  1999年   230篇
  1998年   217篇
  1997年   219篇
  1996年   204篇
  1995年   205篇
  1994年   225篇
  1993年   191篇
  1992年   176篇
  1991年   145篇
  1990年   131篇
  1989年   115篇
  1988年   121篇
  1987年   86篇
  1986年   93篇
  1985年   85篇
  1984年   111篇
  1983年   62篇
  1982年   72篇
  1981年   50篇
  1980年   55篇
  1979年   49篇
  1978年   26篇
  1977年   21篇
  1976年   20篇
  1974年   8篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
971.
The bacterial CRISPR endoribonuclease Csy4 has recently been described as a potential RNA processing tool. Csy4 recognizes substrate RNA through a specific 28-nt hairpin sequence and cleaves at the 3′ end of the stem. To further explore applicability in mammalian cells, we introduced this hairpin at various locations in mRNAs derived from reporter transgenes and systematically evaluated the effects of Csy4-mediated processing on transgene expression. Placing the hairpin in the 5′ UTR or immediately after the start codon resulted in efficient degradation of target mRNA by Csy4 and knockdown of transgene expression by 20- to 40-fold. When the hairpin was incorporated in the 3′ UTR prior to the poly(A) signal, the mRNA was cleaved, but only a modest decrease in transgene expression (∼2.5-fold) was observed. In the absence of a poly(A) tail, Csy4 rescued the target mRNA substrate from degradation, resulting in protein expression, which suggests that the cleaved mRNA was successfully translated. In contrast, neither catalytically inactive (H29A) nor binding-deficient (R115A/R119A) Csy4 mutants were able to exert any of the effects described above. Generation of a similar 3′ end by RNase P-mediated cleavage was unable to rescue transgene expression independent of Csy4. These results support the idea that the selective generation of the Csy4/hairpin complex resulting from cleavage of target mRNA might serve as a functional poly(A)/poly(A) binding protein (PABP) surrogate, stabilizing the mRNA and supporting translation. Although the exact mechanism(s) remain to be determined, our studies expand the potential utility of CRISPR nucleases as tools for controlling mRNA stability and translation.  相似文献   
972.
MicroRNAs bind to and regulate the abundance and activity of target messenger RNA through sequestration, enhanced degradation, and suppression of translation. Although miRNA have a predominantly negative effect on the target protein concentration, several reports have demonstrated a positive effect of miRNA, i.e., increase in target protein concentration on miRNA overexpression and decrease in target concentration on miRNA repression. miRNA–target pair-specific effects such as protection of mRNA degradation owing to miRNA binding can explain some of these effects. However, considering such pairs in isolation might be an oversimplification of the RNA biology, as it is known that one miRNA interacts with several targets, and conversely target mRNA are subject to regulation by several miRNAs. We formulate a mathematical model of this combinatorial regulation of targets by multiple miRNA. Through mathematical analysis and numerical simulations of this model, we show that miRNA that individually have a negative effect on their targets may exhibit an apparently positive net effect when the concentration of one miRNA is experimentally perturbed by repression/overexpression in such a multi-miRNA multitarget situation. We show that this apparent unexpected effect is due to competition and will not be observed when miRNA interact noncompetitively with the target mRNA. This result suggests that some of the observed unusual positive effects of miRNA may be due to the combinatorial complexity of the system rather than due to any inherently unusual positive effect of the miRNA on its target.  相似文献   
973.
Future human well‐being under climate change depends on the ongoing delivery of food, fibre and wood from the land‐based primary sector. The ability to deliver these provisioning services depends on soil‐based ecosystem services (e.g. carbon, nutrient and water cycling and storage), yet we lack an in‐depth understanding of the likely response of soil‐based ecosystem services to climate change. We review the current knowledge on this topic for temperate ecosystems, focusing on mechanisms that are likely to underpin differences in climate change responses between four primary sector systems: cropping, intensive grazing, extensive grazing and plantation forestry. We then illustrate how our findings can be applied to assess service delivery under climate change in a specific region, using New Zealand as an example system. Differences in the climate change responses of carbon and nutrient‐related services between systems will largely be driven by whether they are reliant on externally added or internally cycled nutrients, the extent to which plant communities could influence responses, and variation in vulnerability to erosion. The ability of soils to regulate water under climate change will mostly be driven by changes in rainfall, but can be influenced by different primary sector systems' vulnerability to soil water repellency and differences in evapotranspiration rates. These changes in regulating services resulted in different potentials for increased biomass production across systems, with intensively managed systems being the most likely to benefit from climate change. Quantitative prediction of net effects of climate change on soil ecosystem services remains a challenge, in part due to knowledge gaps, but also due to the complex interactions between different aspects of climate change. Despite this challenge, it is critical to gain the information required to make such predictions as robust as possible given the fundamental role of soils in supporting human well‐being.  相似文献   
974.
975.
Cotton (Gossypium hirsutum) fibre is an important natural raw material for textile industry in the world. Understanding the molecular mechanism of fibre development is important for the development of future cotton varieties with superior fibre quality. In this study, overexpression of Gh14‐3‐3L in cotton promoted fibre elongation, leading to an increase in mature fibre length. In contrast, suppression of expression of Gh14‐3‐3L, Gh14‐3‐3e and Gh14‐3‐3h in cotton slowed down fibre initiation and elongation. As a result, the mature fibres of the Gh14‐3‐3 RNAi transgenic plants were significantly shorter than those of wild type. This ‘short fibre’ phenotype of the 14‐3‐3 RNAi cotton could be partially rescued by application of 2,4‐epibrassinolide (BL). Expression levels of the BR‐related and fibre‐related genes were altered in the Gh14‐3‐3 transgenic fibres. Furthermore, we identified Gh14‐3‐3 interacting proteins (including GhBZR1) in cotton. Site mutation assay revealed that Ser163 in GhBZR1 and Lys51/56/53 in Gh14‐3‐3L/e/h were required for Gh14‐3‐3‐GhBZR1 interaction. Nuclear localization of GhBZR1 protein was induced by BR, and phosphorylation of GhBZR1 by GhBIN2 kinase was helpful for its binding to Gh14‐3‐3 proteins. Additionally, 14‐3‐3‐regulated GhBZR1 protein may directly bind to GhXTH1 and GhEXP promoters to regulate gene expression for responding rapid fibre elongation. These results suggested that Gh14‐3‐3 proteins may be involved in regulating fibre initiation and elongation through their interacting with GhBZR1 to modulate BR signalling. Thus, our study provides the candidate intrinsic genes for improving fibre yield and quality by genetic manipulation.  相似文献   
976.
977.
978.

Background

The Escherichia coli enzyme tryptophanase (TnaA) converts tryptophan to indole, which triggers physiological changes and regulates interactions between bacteria and their mammalian hosts. Tryptophanase production is induced by external tryptophan, but the activity of TnaA is also regulated by other, more poorly understood mechanisms. For example, the enzyme accumulates as a spherical inclusion (focus) at midcell or at one pole, but how or why this localization occurs is unknown.

Results

TnaA activity is low when the protein forms foci during mid-logarithmic growth but its activity increases as the protein becomes more diffuse, suggesting that foci may represent clusters of inactive (or less active) enzyme. To determine what protein characteristics might mediate these localization effects, we constructed 42 TnaA variants: 6 truncated forms and 36 missense mutants in which different combinations of 83 surface-exposed residues were converted to alanine. A truncated TnaA protein containing only domains D1 and D3 (D1D3) localized to the pole. Mutations affecting the D1D3-to-D1D3 interface did not affect polar localization of D1D3 but did delay assembly of wild type TnaA foci. In contrast, alterations to the D1D3-to-D2 domain interface produced diffuse localization of the D1D3 variant but did not affect the wild type protein. Altering several surface-exposed residues decreased TnaA activity, implying that tetramer assembly may depend on interactions involving these sites. Interestingly, changing any of three amino acids at the base of a loop near the catalytic pocket decreased TnaA activity and caused it to form elongated ovoid foci in vivo, indicating that the alterations affect focus formation and may regulate how frequently tryptophan reaches the active site.

Conclusions

The results suggest that TnaA activity is regulated by subcellular localization and by a loop-associated occlusion of its active site. Equally important, these new TnaA variants are immediately available to the research community and should be useful for investigating how tryptophanase is localized and assembled, how substrate accesses its active site, the functional role of acetylation, and other structural and functional questions.

Electronic supplementary material

The online version of this article (doi:10.1186/s12866-015-0346-3) contains supplementary material, which is available to authorized users.  相似文献   
979.
Dysregulation of cell cycle machinery causes abnormal cell division, leading to cancer development. To drive cell cycle properly, expression levels of cell cycle regulators are tightly regulated through the cell cycle. Dual specificity tyrosine phosphorylation-regulated kinase 2 (DYRK2) is a Ser/Thr kinase, and its intracellular functions had not been elucidated for decades. Recent studies have shown that DYRK2 down-regulates key molecules on cell cycle control. This review mainly highlights the DYRK2 function during cell division. In addition, we summarize tumor suppressive role of DYRK2 in cancer cells and discuss future research directions for DYRK2 toward the novel cancer therapies.  相似文献   
980.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号