首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   43103篇
  免费   17313篇
  国内免费   10篇
  2024年   1篇
  2023年   13篇
  2022年   30篇
  2021年   462篇
  2020年   2803篇
  2019年   4326篇
  2018年   4605篇
  2017年   4576篇
  2016年   4289篇
  2015年   4145篇
  2014年   4044篇
  2013年   4417篇
  2012年   3811篇
  2011年   3973篇
  2010年   3466篇
  2009年   2294篇
  2008年   2450篇
  2007年   1870篇
  2006年   1876篇
  2005年   1572篇
  2004年   1243篇
  2003年   1354篇
  2002年   1167篇
  2001年   859篇
  2000年   424篇
  1999年   256篇
  1998年   6篇
  1997年   14篇
  1996年   12篇
  1995年   15篇
  1994年   10篇
  1993年   14篇
  1992年   15篇
  1991年   2篇
  1990年   3篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1985年   2篇
  1982年   2篇
  1980年   1篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
991.
Sulfate reduction is an appropriate approach for the treatment of effluents with sulfate and dissolved metals. In sulfate‐reducing reactors, acetate may largely contribute to the residual organic matter, because not all sulfate reducers are able to couple the oxidation of acetate to the reduction of sulfate, limiting the treatment efficiency. In this study, we investigated the diversity of a bacterial community in the biofilm of a laboratory scale down‐flow fluidized bed reactor, which was developed under sulfidogenic conditions at an influent pH between 4 and 6. The sequence analysis of the microbial community showed that the 16S rRNA gene sequence of almost 50% of the clones had a high similarity with Anaerolineaceae. At second place, 33% of the 16S rRNA phylotypes were affiliated with the sulfate‐reducing bacteria Desulfobacca acetoxidans and Desulfatirhabdium butyrativorans, suggesting that acetotrophic sulfate reduction was occurring in the system. The remaining bacterial phylotypes were related to fermenting bacteria found at the advanced stage of reactor operation. The results indicate that the acetotrophic sulfate‐reducing bacteria were able to remain within the biofilm, which is a significant result because few natural consortia harbor complete oxidizing sulfate‐reducers, improving the acetate removal via sulfate reduction in the reactor.  相似文献   
992.
Covalently bound lipids cover the wool surface and make enzymatic degradation of wool scales very difficult. In this paper, methanolic potassium hydroxide (MPH) pretreatment was used prior to enzymatic treatment of wool with protease, aiming at hydrolyzing the outmost lipids on the wool surface and promoting the subsequent proteolytic reaction. The efficacy of lipid removal from the fiber surface and the properties of the protease‐treated wool were evaluated. The results indicated that mild MPH pretreatment with 0.10 mol/L MPH for 10 min improved the wettability of the wool without adverse impacts on its mechanical properties. The wetting time and area shrinkage of the wool fabric reached 0.5 s and 5.6%, respectively, and the strength loss was within the acceptable range. Pretreatment with high concentrations of MPH for longer times led to significant damage to the wool fibers and caused heavy strength loss, without improving the antifelting properties after protease treatment. Thus, the combination of mild MPH and protease treatments endowed the wool with desirable properties in contrast to the treatment with protease alone.  相似文献   
993.
The major mechanisms of gallstone formation include biliary cholesterol hypersecretion, supersaturation and crystallization, mucus hypersecretion, gel formation and bile stasis. Gallbladder hypomotility seems to be a key event that triggers the precipitation of cholesterol microcrystals from supersaturated lithogenic bile. Telocytes, a new type of interstitial cells, have been recently identified in many organs, including gallbladder. Considering telocyte functions, it is presumed that these cells might be involved in the signalling processes. The purpose of this study was to correlate the quantity of telocytes in the gallbladder with the lithogenicity of bile. Gallbladder specimens were collected from 24 patients who underwent elective laparoscopic cholecystectomy for symptomatic gallstone disease. The control group consisted of 25 consecutive patients who received elective treatment for pancreatic head tumours. Telocytes were visualized in paraffin sections of gallbladders with double immunofluorescence using primary antibodies against c‐Kit (anti‐CD117) and anti‐mast cell tryptase. Cholesterol, phospholipid and bile acid levels were measured in gallbladder bile. The number of telocytes in the gallbladder wall was significantly lower in the study group than that in the control group (3.03 ± 1.43 versus 6.34 ± 1.66 cell/field of view in the muscularis propria, < 0.001) and correlated with a significant increase in the cholesterol saturation index. The glycocholic and taurocholic acid levels were significantly elevated in the control subjects compared with the study group. The results suggest that bile composition may play an important role in the reduction in telocytes density in the gallbladder.  相似文献   
994.
Periodontitis is a bacterially induced chronic inflammatory disease. Dental follicle progenitor cells (DFPCs) have been proposed as biological graft for periodontal regenerative therapies. The potential impact of bacterial toxins on DFPCs properties is still poorly understood. The aim of this study was to investigate whether DFPCs are able to sense and respond to lipopolysaccharide (LPS) from Porphyromonas gingivalis, a major periopathogenic bacterium. Specifically, we hypothesized that LPS could influence the migratory capacity and IL‐6 secretion of DFPCs. DFPCs properties were compared to bone marrow mesenchymal stem cells (BMSCs), a well‐studied class of adult stem cells. The analysis by flow cytometry indicated that DFPCs, similar to BMSCs, expressed low levels of both toll‐like receptor (TLR) 2 and 4. The TLR4 mRNA expression was down‐regulated in response to LPS in both cell populations, while on protein level TLR4 was significantly up‐regulated on BMSCs. The TLR2 expression was not influenced by the LPS treatment in both DFPCs and BMSCs. The migratory efficacy of LPS‐treated DFPCs was evaluated by in vitro scratch wound assays and found to be significantly increased. Furthermore, we assayed the secretion of interleukin‐6 (IL‐6), a potent stimulator of cell migration. Interestingly, the levels of IL‐6 secretion of DFPCs and BMSCs remained unchanged after the LPS treatment. Taken together, these results suggest that DFPCs are able to sense and respond to P. gingivalis LPS. Our study provides new insights into understanding the physiological role of dental‐derived progenitor cells in sites of periodontal infection.  相似文献   
995.
Telocytes (TC), a cell population located in the connective tissue of many organs of humans and laboratory mammals, are characterized by a small cell body and extremely long and thin processes. Different TC subpopulations share unique ultrastructural features, but express different markers. In the gastrointestinal (GI) tract, cells with features of TC were seen to be CD34‐positive/c‐kit‐negative and several roles have been proposed for them. Other interstitial cell types with regulatory roles described in the gut are the c‐kit‐positive/CD34‐negative/platelet‐derived growth factor receptor α (PDGFRα)‐negative interstitial cells of Cajal (ICC) and the PDGFRα‐positive/c‐kit‐negative fibroblast‐like cells (FLC). As TC display the same features and locations of the PDGFRα‐positive cells, we investigated whether TC and PDGFRα‐positive cells could be the same cell type. PDGFRα/CD34, PDGFRα/c‐kit and CD34/c‐kit double immunolabelling was performed in full‐thickness specimens from human oesophagus, stomach and small and large intestines. All TC in the mucosa, submucosa and muscle coat were PDGFRα/CD34‐positive. TC formed a three‐dimensional network in the submucosa and in the interstitium between muscle layers, and an almost continuous layer at the submucosal borders of muscularis mucosae and circular muscle layer. Moreover, TC encircled muscle bundles, nerve structures, blood vessels, funds of gastric glands and intestinal crypts. Some TC were located within the muscle bundles, displaying the same location of ICC and running intermingled with them. ICC were c‐kit‐positive and CD34/PDGFRα‐negative. In conclusion, in the human GI tract the TC are PDGFRα‐positive and, therefore, might correspond to the FLC. We also hypothesize that in human gut, there are different TC subpopulations probably playing region‐specific roles.  相似文献   
996.
An interdisciplinary approach employing functionalized nanoparticles and ultrasensitive spectroscopic techniques is reported here to track the molecular changes in early stage of malignancy. Melanoma tissue tracking at molecular level using both labelled and unlabelled silver and gold nanoparticles has been achieved using surface enhanced Raman scattering (SERS) technique. We used skin tissue from ex vivo mice with induced melanoma. Raman and SERS molecular characterization of melanoma tissue is proposed here for the first time. Optical nanosensors based on Ag and Au nanoparticles with chemisorbed cresyl violet molecular species as labels revealed sensitive capability to tissues tagging and local molecular characterization. Sensitive information originating from surrounding native biological molecules is provided by the tissue SERS spectra obtained either with visible or NIR laser line. Labelled nanoparticles introduced systematic differences in tissue response compared with unlabelled ones, suggesting that the label functional groups tag specific tissue components revealed by proteins or nucleic acids bands. Vibrational data collected from tissue are presented in conjunction with the immunohistochemical analysis. The results obtained here open perspectives in applied plasmonic nanoparticles and SERS for the early cancer diagnostic based on the appropriate spectral databank.  相似文献   
997.
Nanoporous network polymer nanocomposites with tunable pore size for size‐dependent selective ion transport are successfully prepared via the surface‐induced cross‐linking polymerization of methyl methacrylate (MMA) and 1,6‐hexanediol diacrylate (HDDA) on the surfaces of nanocrystalline TiO2 particles. The morphologies of the porous network polymer layer and nanopores were investigated by transmission electron microscopy (TEM), field emission scanning electron microscopy (FE‐SEM), and Brunauer–Emmett–Teller (BET) experiments. The porous layer size‐selectively screened the ions that contacted the nanocrystalline TiO2 particles, as demonstrated by ion conductivity measurements, electrochemical impedance spectroscopy (EIS), and transient absorption spectroscopy (TAS).  相似文献   
998.
Polymer:fullerene solar cells are demonstrated with power conversion efficiencies over 7% with blends of PBDTTPD and PC61BM. These devices achieve open‐circuit voltages (Voc) of 0.945 V and internal quantum efficiencies of 88%, making them an ideal candidate for the large bandgap junction in tandem solar cells. Voc’s above 1.0 V are obtained when the polymer is blended with multiadduct fullerenes; however, the photocurrent and fill factor are greatly reduced. In PBDTTPD blends with multiadduct fullerene ICBA, fullerene emission is observed in the photoluminescence and electroluminescence spectra, indicating that excitons are recombining on ICBA. Voltage‐dependent, steady state and time‐resolved photoluminescence measurements indicate that energy transfer occurs from PBDTTPD to ICBA and that back hole transfer from ICBA to PBDTTPD is inefficient. By analyzing the absorption and emission spectra from fullerene and charge transfer excitons, we estimate a driving free energy of –0.14 ± 0.06 eV is required for efficient hole transfer. These results suggest that the driving force for hole transfer may be too small for efficient current generation in polymer:fullerene solar cells with Voc values above 1.0 V and that non‐fullerene acceptor materials with large optical gaps (>1.7 eV) may be required to achieve both near unity internal quantum efficiencies and values of Voc exceeding 1.0 V.  相似文献   
999.
Simple bilayer solar cells, using commercially available cationic cyanine dyes as donors and evaporated C60 layer as an acceptor are prepared. Cyanine dyes with absorption maxima of 578, 615 and 697 nm having either perchlorate or hexafluorophosphate counter‐ions are evaluated. The perchlorate dye leads to cells with S‐shape current‐voltage curves; only the dyes with the hexafluorophosphate counter‐ions lead to efficient solar cells. When the wide bandgap dyes are employed, S‐shape current‐voltage curves are obtained when the conductive polymer PEDOT:PSS is used as hole transport layer. Substitution of PEDOT:PSS with MoO3 leads to cells with more rectangular current–voltage curves and high fill factors. Additionally, the cells using the MoO3 layer for hole extraction lead to high open circuit voltages of 0.9 V. In the case that a low bandgap hexafluorophosphate dye is used with the HOMO above that of the PEDOT:PSS the cell performance is independent on the type of hole transport layer employed. Using this approach, bilayer solar cells are obtained with power efficiencies ranging from 1.8 to 2.9% depending on the particular dye employed. These are impressive numbers for bilayer solar cell that are partially solution processed in ambient conditions.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号