首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32927篇
  免费   2147篇
  国内免费   3440篇
  2024年   79篇
  2023年   533篇
  2022年   769篇
  2021年   928篇
  2020年   852篇
  2019年   1120篇
  2018年   1049篇
  2017年   821篇
  2016年   872篇
  2015年   1018篇
  2014年   1860篇
  2013年   2172篇
  2012年   1534篇
  2011年   1939篇
  2010年   1576篇
  2009年   1743篇
  2008年   1863篇
  2007年   1821篇
  2006年   1600篇
  2005年   1482篇
  2004年   1294篇
  2003年   1243篇
  2002年   1012篇
  2001年   770篇
  2000年   721篇
  1999年   700篇
  1998年   684篇
  1997年   589篇
  1996年   505篇
  1995年   532篇
  1994年   509篇
  1993年   465篇
  1992年   442篇
  1991年   349篇
  1990年   310篇
  1989年   297篇
  1988年   207篇
  1987年   231篇
  1986年   178篇
  1985年   233篇
  1984年   251篇
  1983年   196篇
  1982年   204篇
  1981年   178篇
  1980年   151篇
  1979年   150篇
  1978年   129篇
  1977年   65篇
  1976年   86篇
  1974年   71篇
排序方式: 共有10000条查询结果,搜索用时 18 毫秒
991.
《Journal of Asia》2020,23(2):371-379
To compare the spread patterns between two types of plant viruses, non-persistent virus (NPV) and persistent virus (PV), we developed a spatially-explicit individual-based model. Our probability-based model is driven by the actions of insect vectors that are affected by interactions with host plants and plant viruses, considering both biological and behavioral components of their relationship. As a model system, we used potato virus y and potato leafroll virus, respectively for NPV and PV, potato for host plant, and Myzus persicae for the insect vector; empirical results from previous studies were acquired and adjusted to be used as our parameter values. Our simulation results showed that initial infection of PV in the field resulted in over 1.3 times greater number of insect vectors while causing approximately 7 times greater number of virus-infected plants compared to NPV by the end of simulation. Furthermore, spatial analysis showed that PV-infected plants showed greater aggregation in the field, forming larger patches compared to NPV-infected plants. Our results demonstrated the importance of host plant and insect vector manipulation by plant viruses as well as biological properties such as infectious period in the insect on the difference in overall spread pattern.  相似文献   
992.
In the present study, a new hepatic tissue‐origin cell line from European eel Anguilla anguilla has been developed and characterized. This cell line designated EL has been maintained in Leibovitz L‐15 supplemented with 10% fetal bovine serum over 72 months, and subcultured more than 90 times. The EL cell line consisted predominantly of fibroblast‐like cells, which could survive over 100 days in vitro, and could grow at 15–32°C. The optimum temperature for growth was 27°C. The chromosome analysis revealed a modal diploid karyotype of 2n = 38. The origin of this cell line was confirmed by the 18S recombinant (r)RNA sequencing. The susceptibility test indicated significant cytopathic effects in the EL cells with regard to the Rana grylio virus and the Herpesvirus anguillae. The viral replication was confirmed by transmission electron microscopy and polymerase chain reaction analysis. Following poly (I:C) exposure, the expression levels of the immune‐related molecules interferon regulatory factor‐7 (irf7) and transforming growth factor‐β (TGF‐β) were downregulated in EL cells, whereas the expression levels of the rf3 and the cytochrome P450 (CYP450) were upregulated. All four genes were significantly upregulated following inflammation by lipopolysaccharide (LPS). These data suggested the application of EL cell line for viral identification, as well as for immunodiagnosis and pharmacological targeting.  相似文献   
993.
994.
The AAV2.7m8 vector is an engineered capsid with a 10-amino acid insertion in adeno-associated virus (AAV) surface variable region VIII (VR-VIII) resulting in the alteration of an antigenic region of AAV2 and the ability to efficiently transduce retina cells following intravitreal administration. Directed evolution and in vivo screening in the mouse retina isolated this vector. In the present study, we sought to identify the structural differences between a recombinant AAV2.7m8 (rAAV2.7m8) vector packaging a GFP genome and its parental serotype, AAV2, by cryo-electron microscopy (cryo-EM) and image reconstruction. The structures of rAAV2.7m8 and AAV2 were determined to 2.91 and 3.02 Å resolution, respectively. The rAAV2.7m8 amino acid side-chains for residues 219–745 (the last C-terminal residue) were interpretable in the density map with the exception of the 10 inserted amino acids. While observable in a low sigma threshold density, side-chains were only resolved at the base of the insertion, likely due to flexibility at the top of the loop. A comparison to parental AAV2 (ordered from residues 217–735) showed the structures to be similar, except at some side-chains that had different orientations and, in VR-VIII containing the 10 amino acid insertion. VR-VIII is part of an AAV2 antigenic epitope, and the difference is consistent with rAAV2.7m8′s escape from a known AAV2 monoclonal antibody, C37-B. The observations provide valuable insight into the configuration of inserted surface peptides on the AAV capsid and structural differences to be leveraged for future AAV vector rational design, especially for retargeted tropism and antibody escape.  相似文献   
995.
Grazing behaviour between protozoa and phytoplankton exists widely in planktonic ecosystems. Poterioochromonas malhamensis is a well‐known and widespread mixotrophic flagellate, which is recognized to play an important role within marine and freshwater planktonic ecosystems and regarded as the greatest contamination threat for mass algal cultures of Chlorella. In this study, a comprehensive range of factors, including morphological characters, biochemical compositions, and specific growth rate of ten species or strains of Chlorella, were evaluated for their effect on the feeding ability of P. malhamensis, which was assessed by two parameters: the clearance rate of P. malhamensis on Chlorella spp. and the specific growth rate of P. malhamensis. The results showed that the clearance rate of P. malhamensis was negatively correlated with cell wall thickness and specific growth rate of Chlorella spp., while the specific growth rate of P. malhamensis was positively correlated with carbohydrate percentage and C/N ratio and negatively correlated with protein, lipid percentage, and nitrogen mass. In conclusion, the factors influencing feeding selectivity include not only the morphological character and chemical composition of Chlorella, but also its population dynamics. Our study provides useful insights into the key factors that affect the feeding selectivity of P. malhamensis and provides basic and constructive data to help in screening for grazing‐resistant microalgae.  相似文献   
996.
In this research we describe the improvement of the water‐solubility of cyclic epitope mimics based on the HCV E2 glycoprotein by incorporation of suitable polar hinges. The poor solubility of epitope mimics based on peptide sequences in the envelope (E2) protein hampered their synthesis and purification and made it very difficult to prepare the molecular constructs for evaluation of their bioactivity. Since changes in the amino acid composition are hardly possible in these epitope mimics in order to increase water‐solubility, a polar cyclization hinge may offer a remedy leading to a significant increase of polarity and therefore water solubility. These polar hinges were applied in the synthesis of better water‐soluble HCV‐E2 epitopes. An azide functionality in the polar hinges allowed attachment of a tetraethylene glycol linker by Cu‐catalyzed azide‐alkyne cyclo‐addition (CuAAC) for a convenient conjugation to ELISA plates in order to evaluate the bio‐activity of the epitope mimics. The immunoassays showed that the use of more polar cyclization hinges still supported anti‐HCV antibody recognition and did not negatively influence their binding. This significantly increased solubility induced by polar hinges should therefore allow for the molecular construction and ultimate evaluation of synthetic vaccine molecules.  相似文献   
997.
998.
《Mycoscience》2020,61(6):331-336
To understand how ectomycorrhizal (ECM), wood-decomposing (WDC) and litter-decomposing (LDC) fungi differ in abundance and fruiting season, fruiting-body production was monitored by counting their number and/or measuring their biomass in deciduous broad-leaved and coniferous forests in Ishikawa (central Japan) and Hokkaido (northern Japan). ECM fungi were dominant in forests of both types in Ishikawa and a Larix kaempheri forest in Tomakomai (Hokkaido), whereas WDC fungi were dominant in a deciduous broad-leaved forest in Sapporo (Hokkaido). ECM and WDC fungi usually showed two abundance peaks in Kanazawa (Ishikawa), mid-summer and autumn for ECM fungi and spring or summer and autumn for WDC fungi, whereas LDC fungi usually showed one peak in autumn. In Tomakomai, the abundance peak appeared later in ECM fungi but earlier in LDC and WDC fungi in comparison with Kanazawa. The mode of resource acquisition is assumed as one of factors that affect the seasonal timing of fruiting-body production. On the other hand, highly positive correlations were often observed between precipitation in Jun or Aug and the fruiting-body production in summer and/or autumn in the survey in Kanazawa, suggesting that precipitation could affect the fruiting-body production a few months later.  相似文献   
999.
Arctic and boreal ecosystems play an important role in the global carbon (C) budget, and whether they act as a future net C sink or source depends on climate and environmental change. Here, we used complementary in situ measurements, model simulations, and satellite observations to investigate the net carbon dioxide (CO2) seasonal cycle and its climatic and environmental controls across Alaska and northwestern Canada during the anomalously warm winter to spring conditions of 2015 and 2016 (relative to 2010–2014). In the warm spring, we found that photosynthesis was enhanced more than respiration, leading to greater CO2 uptake. However, photosynthetic enhancement from spring warming was partially offset by greater ecosystem respiration during the preceding anomalously warm winter, resulting in nearly neutral effects on the annual net CO2 balance. Eddy covariance CO2 flux measurements showed that air temperature has a primary influence on net CO2 exchange in winter and spring, while soil moisture has a primary control on net CO2 exchange in the fall. The net CO2 exchange was generally more moisture limited in the boreal region than in the Arctic tundra. Our analysis indicates complex seasonal interactions of underlying C cycle processes in response to changing climate and hydrology that may not manifest in changes in net annual CO2 exchange. Therefore, a better understanding of the seasonal response of C cycle processes may provide important insights for predicting future carbon–climate feedbacks and their consequences on atmospheric CO2 dynamics in the northern high latitudes.  相似文献   
1000.
American bolloworm, Helicoverpa armigera Hubner (Noctuidae: Lepidoptera) is considered as a major pest of various crops all over the world. It is mainly controlled by indiscriminate use of synthetic insecticides in the world due to which this pest developed resistance to most of the available insecticides. Therefore, in the current study, the efficacy of virulent strain of HaNPV (0.5 × 109 PIB/ml) alone and in combination with recommended doses of spintoram (20 g/100 L of water) and emamectin benzoate (200 ml/100 L of water) was tested in field. The combination of HaNPV with spintoram and emamectin benzoate 100% reduced the larval population as compared to emamectin benzoate and HaNPV alone. This suggested that the combination of spintoram and emamectin benzoate with HaNPV could be used in field to manage the infestation of H. armigera.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号