首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1294篇
  免费   78篇
  国内免费   49篇
  1421篇
  2024年   2篇
  2023年   18篇
  2022年   21篇
  2021年   29篇
  2020年   22篇
  2019年   37篇
  2018年   42篇
  2017年   16篇
  2016年   21篇
  2015年   48篇
  2014年   79篇
  2013年   110篇
  2012年   37篇
  2011年   77篇
  2010年   58篇
  2009年   74篇
  2008年   60篇
  2007年   70篇
  2006年   71篇
  2005年   60篇
  2004年   56篇
  2003年   49篇
  2002年   58篇
  2001年   30篇
  2000年   14篇
  1999年   30篇
  1998年   22篇
  1997年   22篇
  1996年   15篇
  1995年   27篇
  1994年   23篇
  1993年   17篇
  1992年   11篇
  1991年   11篇
  1990年   11篇
  1989年   5篇
  1988年   10篇
  1987年   6篇
  1986年   7篇
  1985年   9篇
  1984年   9篇
  1983年   7篇
  1982年   5篇
  1981年   3篇
  1980年   2篇
  1979年   3篇
  1978年   4篇
  1973年   2篇
  1972年   1篇
排序方式: 共有1421条查询结果,搜索用时 15 毫秒
101.
We have studied internal electron transfer during the reaction of Saccharomyces cerevisiae mitochondrial cytochrome c oxidase with dioxygen. Similar absorbance changes were observed with this yeast oxidase as with the previously studied Rhodobacter sphaeroides and bovine mitochondrial oxidases, which suggests that the reaction proceeds along the same trajectory. However, notable differences were observed in rates and electron-transfer equilibrium constants of specific reaction steps, for example the ferryl (F) to oxidized (O) reaction was faster with the yeast (0.4 ms) than with the bovine oxidase (~ 1 ms) and a larger fraction CuA was oxidized with the yeast than with the bovine oxidase in the peroxy (PR) to F reaction. Furthermore, upon replacement of Glu243, located at the end of the so-called D proton pathway, by Asp the PR → F and F → O reactions were slowed by factors of ~ 3 and ~ 10, respectively, and electron transfer from CuA to heme a during the PR → F reaction was not observed. These data indicate that during reduction of dioxygen protons are transferred through the D pathway, via Glu243, to the catalytic site in the yeast mitochondrial oxidase. This article is part of a Special Issue entitled: 18th European Bioenergetic Conference.  相似文献   
102.
Taxus chinensis var. mairei (Taxaceae) is a domestic variety of yew species in local China. This plant is one of the sources for paclitaxel, which is a promising antineoplastic chemotherapy drugs during the last decade. We have sequenced the complete nucleotide sequence of the chloroplast (cp) genome of T. chinensis var. mairei. The T. chinensis var. mairei cp genome is 129,513 bp in length, with 113 single copy genes and two duplicated genes (trnI-CAU, trnQ-UUG). Among the 113 single copy genes, 9 are intron-containing. Compared to other land plant cp genomes, the T. chinensis var. mairei cp genome has lost one of the large inverted repeats (IRs) found in angiosperms, fern, liverwort, and gymnosperm such as Cycas revoluta and Ginkgo biloba L. Compared to related species, the gene order of T. chinensis var. mairei has a large inversion of ~ 110 kb including 91 genes (from rps18 to accD) with gene contents unarranged. Repeat analysis identified 48 direct and 2 inverted repeats 30 bp long or longer with a sequence identity greater than 90%. Repeated short segments were found in genes rps18, rps19 and clpP. Analysis also revealed 22 simple sequence repeat (SSR) loci and almost all are composed of A or T.  相似文献   
103.
The prion protein (PrP), a GPI-anchored glycoprotein, is inefficiently secreted by mammalian microsomes, 50% being found as transmembrane (TM) proteins with the central TM1 segment spanning the membrane. TM1 hydrophobicity is marginal for lateral membrane insertion, which is primarily driven by hydrophobic interaction between the ER translocon and substrates in transit. Most inserted TM1 has its N-terminus in the ER lumen (Ntm orientation), as expected for arrest of normal secretion. However, 20% is found in inverted Ctm orientation. These are minor species in vivo, presumably a consequence of efficient quality control. PrP mutations that increase TM1 hydrophobicity result in increased Ctm insertion, both in vitro and in mouse brain, and a strong correlation is found between CtmPrP insertion and neuropathology in transgenic mice; a copper-dependent pathogenicity mechanism is suggested. PrP fusions with a C-terminal epitope tag, when expressed in yeast cells at moderate levels, appear to interact efficiently with the translocon, providing a useful model for testing the effects of PrP mutations on TM insertion and orientation. However, secretion of PrP by the mammalian translocon requires the TRAP complex, absent in yeast, where essentially all PrP ends up as TM species, 85–90% Ntm and 10–15% Ctm. Although yeast is, therefore, an incomplete mimic of mammalian PrP trafficking, effects on Ctm insertion of mutations increasing TM1 hydrophobicity closely reflect those seen in vitro. Electrostatic substrate-translocon interactions are a major determinant of TM protein insertion orientation and the yeast model was used to investigate the role of the large negative charge difference across TM1, a likely cause of translocation delay that would favor TM insertion and Ctm orientation. An increase in ΔCh from −5 to −7 caused a marked increase in Ctm insertion, while a decrease to −3 or −1 allowed 35 and about 65% secretion, respectively. Utility of the yeast model and the role of this charge difference in driving PrP membrane insertion are confirmed.  相似文献   
104.
After activation, Bacillus thuringiensis (Bt) insecticidal toxin forms pores in larval midgut epithelial cell membranes, leading to host death. Although the crystal structure of the soluble form of Cry1Aa has been determined, the conformation of the pores and the mechanism of toxin interaction with and insertion into membranes are still not clear. Here we show that Cry1Aa spontaneously inserts into lipid mono- and bilayer membranes of appropriate compositions. Fourier Transform InfraRed spectroscopy (FTIR) indicates that insertion is accompanied by conformational changes characterized mainly by an unfolding of the β-sheet domains. Moreover, Atomic Force Microscopy (AFM) imaging strongly suggests that the pores are composed of four subunits surrounding a 1.5 nm diameter central depression. Received: 14 July 2000/Revised: 28 December 2000  相似文献   
105.
Heat shock proteins (HSP) or stress proteins serve as biomarkers to identify the contribution of stress situations underlying the pathogenesis of degenerative diseases of the CNS. We have analyzed by immunoblot technique the constitutive and inducible occurrence of stress proteins in cultured rat brain oligodendrocytes subjected to heat shock or oxidative stress exerted by hydrogen peroxide, or a combination of both. The data demonstrate that oligodendrocytes constitutively express HSP32, HSP60 and the cognate form of the HSP70 family of proteins, HSC70. After heat shock, HSP25, alpha B-crystallin and HSP70 were up-regulated, while after oxidative stress the specific induction of HSP32 and alpha B-crystallin was observed. HSP32 represents heme oxygenase 1 (HO-1), a small stress protein with enzymatic activity involved in the oxidative degradation of heme which participates in iron metabolism. The presence of the iron chelators phenanthroline or deferoxamine (DFO), which previously has been shown to protect oligodendrocytes from oxidative stress-induced onset of apoptosis, caused a marked stimulation of HSP32 without affecting HSP70. This indicates that DFO possibly exerts its protective role by directly influencing the antioxidant capacity of HO-1. In summary, HSP in oligodendrocytes are differentially stimulated by heat stress and oxidative stress. Heme oxygenase-1 has been linked to inflammatory processes and oxidative stress, its specific up-regulation after oxidative stress in oligodendrocytes suggests that it is an ideal candidate to investigate the involvement of oxidative stress in demyelinating diseases.  相似文献   
106.
Streptococcus pneumoniae has re-emerged as a major cause of morbidity and mortality throughout the world and its continuous increase in antimicrobial resistance is rapidly becoming a leading cause of concern for public health. This review is focussed on the analysis of recent insights on the study of capsular polysaccharide biosynthesis, and cell wall (murein) hydrolases, two fundamental pneumococcal virulence factors. Besides, we have also re-evaluated the molecular biology of the pneumococcal phage, their possible role in pathogenicity and in the shaping of natural populations of S. pneumoniae. Precise knowledge of the topics reviewed here should facilitate the rationale to move towards the design of alternative ways to combat pneumococcal disease.  相似文献   
107.
Heme oxygenase-1 (HO-1) is an inducible enzyme that catalyzes oxidative degradation of heme to form biliverdin, carbon monoxide (CO), and free iron. Biliverdin is subsequently reduced to bilirubin by the enzyme biliverdin reductase. Increasing evidence has indicated the critical role of HO-1 in cytoprotection and more diverse biological functions. Induction of HO-1 by various chemical inducers that are primarily cell stress inducers or by HO-1 gene transfection confers a protective capacity to cultured cells as well as to cells in several in vivo animal models. In addition, HO-1-deficient mice exhibit a significant increase in susceptibility to tissue injury. The cytoprotective action of HO-1 seems to be mainly a function of the antiapoptotic effects of the enzyme. HO-1 is believed to exert this antiapoptotic action by multiple mechanisms: (a) decreased intracellular pro-oxidant levels, (b) increased bilirubin levels, and (c) elevated CO production. CO may produce an antiapoptotic effect by inhibiting both expression of p53 and release of mitochondrial cytochrome c. HO-1 may also be a target in antitumor therapy because the growth of most tumors depends on HO-1. Our preliminary studies with an HO inhibitor showed a promising antitumor effect. This preliminary work warrants continued investigation for possible novel anticancer chemotherapy.  相似文献   
108.
Heme oxygenase (HO) is implicated in protection against oxidative stress, proliferation and apoptosis in many cell types, including neurons. We utilized olfactory receptor neurons (ORNs) as a model to define the roles of HO-1 and HO-2 in neuronal development and survival, and to determine the mediators of these effects. The olfactory system is a useful model as ORNs display neurogenesis post-natally and do not contain nitric oxide synthase (NOS) activity, which could confound results. HO isoforms were expressed in ORNs during embryogenesis and post-natally. Mice null for either HO-1 or HO-2 displayed decreased proliferation of neuronal precursors. However, apoptosis was increased only in HO-2 null mice. Cyclic GMP immunostaining was reduced in ORNs in both genotypes, providing direct evidence that HO mediates cGMP production in vivo. Bilirubin immunostaining was reduced only in HO-2 null mice. These roles for HO-1 and HO-2 were confirmed using detergent ablation of the epithelium to observe increased neurogenesis of ORNs after target disruption in HO null mice. Primary cultures of ORNs revealed that proliferative and survival effects of HO were mediated through cGMP and bilirubin, respectively. These results support a role for HO, the CO-cGMP signaling system and bilirubin in neurodevelopment and in response to injury.  相似文献   
109.
Biliverdin reductase was characterized and purified from the liver of Atlantic salmon (Salmo salar) using a novel enzymatic staining method. The properties of the enzyme are quite different from those of mammals. The purified enzyme is a monomeric protein with a molecular weight of approximately 68 kD and an isoelectric point of around 3.8. The enzyme can utilize both NADH and NADPH as coenzyme, but the kinetic properties of the NADH-dependent and the NADPH-dependent enzyme activities are different: K m value for biliverdin IX is 0.6 M in the NADPH system, while it is 6.8 M in the NADH system. Both enzyme activities are inhibited by excess biliverdin IX, but the NADPH-dependent enzyme activity is far more susceptible. The optimum pH for activity is 5.5 with NADPH and 6.0 with NADH. The optimum reaction temperature is 35°C.  相似文献   
110.
The role of heme oxygenase signaling in various disorders   总被引:3,自引:0,他引:3  
Modern methods of cell and molecular biology, augmented by molecular technology, have great potential for helping to unravel the complex mechanisms of various diseases. They also have the potential to help us try to dissect the events which follow the altered physiological conditions. Thus, there is every reason to believe that some of the potential mechanisms will be translated sooner or later into the clinic. Heme oxygenase (HO)-related mechanisms play an important role in several aspects of different diseases. In the past several years, significant progress has been made in our understanding of the function and regulation of HO. The objective of this article is to review current knowledge relating to the importance of HO mechanism in various diseases including myocardial ischemia/reperfusion, hypertension, cardiomyopathy, organ transplantation, endotoxemia, lung diseases, and immunosuppression. The morbidity and mortality of these diseases remain high even with optimal medical management. Furthermore, in this review, we consider various factors influencing the HO system and finally assess current pharmacological approaches to their control.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号