首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1522篇
  免费   86篇
  国内免费   41篇
  2023年   21篇
  2022年   27篇
  2021年   35篇
  2020年   32篇
  2019年   40篇
  2018年   48篇
  2017年   37篇
  2016年   34篇
  2015年   57篇
  2014年   78篇
  2013年   133篇
  2012年   32篇
  2011年   85篇
  2010年   54篇
  2009年   67篇
  2008年   60篇
  2007年   63篇
  2006年   55篇
  2005年   42篇
  2004年   42篇
  2003年   38篇
  2002年   47篇
  2001年   34篇
  2000年   15篇
  1999年   32篇
  1998年   25篇
  1997年   31篇
  1996年   12篇
  1995年   22篇
  1994年   15篇
  1993年   15篇
  1992年   10篇
  1991年   12篇
  1990年   9篇
  1989年   12篇
  1988年   13篇
  1987年   5篇
  1985年   28篇
  1984年   22篇
  1983年   27篇
  1982年   43篇
  1981年   41篇
  1980年   31篇
  1979年   25篇
  1978年   11篇
  1977年   11篇
  1976年   3篇
  1975年   2篇
  1974年   4篇
  1973年   7篇
排序方式: 共有1649条查询结果,搜索用时 203 毫秒
961.
We present a novel series of HIV integrase inhibitors, showing IC50s ranging from 0.01 to over 370 μM in an enzymatic assay. Furthermore, pharmacophore modeling study for the inhibitors was carried out to elucidate the structure–activity relationships. Finally, we found a 3D-pharmacophore model, which is composed of a hydrophilic and a hydrophobic domain, providing valuable information for designing other novel types of integrase inhibitors.  相似文献   
962.
Glutathione S-transferase of the malarial parasite Plasmodium falciparum (PfGST) represents a novel class of GST isoenzymes. Since the architecture of the PfGST substrate binding site differs significantly from its human counterparts and there is only this one isoenzyme present in the parasite, PfGST is considered a highly attractive target for antimalarial drug development. Here we report the mechanistic, kinetic, and structural characterization of PfGST as well as its interaction with different ligands. Our data indicate that in solution PfGST is present as a tetramer that dissociates into dimers in the presence of glutathione (GSH). Fluorescence spectroscopy shows that in the presence of GSH GST serves as ligandin for parasitotoxic ferriprotoporphyrin IX with a high- and a low-affinity binding site. This is supported by a clear uncompetitive inhibition type. Site-directed mutagenesis studies demonstrate that neither Cys 86 nor Cys 101 contribute to the peroxidase activity of the enzyme, which is thus performed GSH-dependently at the active site. Tyr 9 is responsible for the deprotonation of GSH and Lys 15, but also Gln 71 are involved in GSH binding. We furthermore report the 2.4 A resolution X-ray structure of PfGST cocrystallized with the inhibitor S-hexylglutathione. In comparison with a previously reported structure obtained by crystal soaking, differences occur at the C-terminal end of helix alpha4 and at the S-hexylmoiety of the inhibitor. We furthermore show that, in contrast to previous reports, the antimalarial drug artemisinin is not metabolized by PfGST.  相似文献   
963.
Haemophilus influenzae has an absolute requirement for heme, which may be supplied as the haemoglobin-haptoglobin complex. Utilization of haemoglobin-haptoglobin by H. influenzae is mediated by a family of proteins termed the haemoglobin-haptoglobin binding proteins (Hgps), of which a given strain may contain up to four genes. Human haptoglobin occurs in three phenotypes (1-1, 2-1 and 2-2). Using mutant derivatives of an H. influenzae type b strain that expressed single Hgps we analysed the ability of each Hgp to utilize haemoglobin complexed to the various haptoglobin phenotypes. A strain expressing only HgpB was able to utilize haemoglobin bound to all haptoglobin phenotypes significantly better than strains expressing either HgpA or HgpC.  相似文献   
964.
Carracedo A  Egia A  Guzmán M  Velasco G 《FEBS letters》2006,580(6):1571-1575
Here we studied the mechanism of cell sensitization to oxidative stress by analyzing the gene expression profile of serum-deprived astrocytes. Exposure to serum-free medium (i) sensitized astrocytes to oxidative stress, (ii) reduced the expression of several genes involved in protection against oxidative stress, including heme oxygenase 1, and (iii) changed the expression of several genes involved in the control of cell survival, including the stress-regulated protein p8. Our results support that serum deprivation sensitizes astrocytes to oxidative stress via a p38 mitogen-activated protein kinase-dependent p8 upregulation that leads in turn to decreased heme oxygenase 1 expression.  相似文献   
965.
Role of carbon monoxide in cardiovascular function   总被引:1,自引:0,他引:1  
Carbon monoxide (CO) is an endogenously derived gas formed from the breakdown of heme by the enzyme heme oxygenase. Although long considered an insignificant and potentially toxic waste product of heme catabolism, CO is now recognized as a key signaling molecule that regulates numerous cardiovascular functions. Interestingly, alterations in CO synthesis are associated with many cardiovascular disorders, including atherosclerosis, septic shock, hypertension, metabolic syndrome, and ischemia-reperfusion injury. Significantly, restoration of physiologic CO levels exerts a beneficial effect in many of these settings, suggesting a crucial role for CO in maintaining cardiovascular homeostasis. In this review, we outline the actions of CO in the cardiovascular system and highlight this gas as a potential therapeutic target in treating a multitude of cardiovascular disorders.  相似文献   
966.
1. The purpose of the present study was to investigate the interaction between hydrogen sulfide (H(2)S) and carbon monoxide (CO) during recurrent febrile seizures (FS) 2.H(2)S and CO are important intra- and intercellular messengers, regulating various brain functions. Our recent studies showed that both of them alleviate the hippocampal damage induced by recurrent FS. In the present study, on a rat model of recurrent FS, we found that hydroxylamine (an inhibitor of cystathionine b-synthase, CBS) reduced CO level and down regulated heme oxygenase (HO-1) expression, while NaHS (a donor of H(2)S) elevated CO level and upregulated HO-1 expression. ZnPP-IX (an inhibitor of HO-1) decreased H(2)S formation and down regulated CBS expression, while hemin (which increases the production of endogenous CO) enhanced H(2)S formation and elevated CBS expression. 3.Our data demonstrate that endogenous H(2)S and CO are in synergy with each other in recurrent FS.  相似文献   
967.
Shen B  Xu X  Chen J  Zhang X  Xu B 《Chirality》2006,18(9):757-761
Conditions for separation of enantiomers of a mandelic acid derivative, methyl 2-phenyl-2-(tetrahydropyranyloxy) acetate (the analyte) were studied. Because of the presence of two chiral carbons, the analyte consists of four stereoisomers stable at ambient temperature. Chiral HPLC of the analyte resulted in four peaks, using an (S,S)-Whelk-O1 column with the mobile phase consisting of hexane and the t-butyl methyl ether (TBME). It was found that TBME dramatically changed the retention of the isomers, though it produced the best enantioseparation on (S,S)-Whelk-O1. The amount of TBME in the mobile phase influenced the degree of retention shift; 5% (v/v) TBME gave a bigger shift than 8% (v/v) and 10% (v/v). 2-Propanol did not produce the same results. The chiral separation was also tried on cellulose tris (3, 5-dimethyl phenylcarbamate) (CDMPC), but only three peaks were seen, indicating some but not full enantiomer resolution.  相似文献   
968.
A catalase-related allene oxide synthase (cAOS) and true catalases that metabolize hydrogen peroxide have similar structure around the heme. One of the distal heme residues considered to help control catalysis is a highly conserved asparagine. Here we addressed the role of this residue in metabolism of the natural substrate 8R-hydroperoxyeicosatetraenoic acid by cAOS and in H2O2 breakdown by catalase. In cAOS, the mutations N137A, N137Q, N137S, N137D, and N137H drastically reduced the rate of reaction (to 0.8–4% of wild-type), yet the mutants all formed the allene oxide as product. This is remarkable because there are many potential heme-catalyzed transformations of fatty acid hydroperoxides and special enzymatic control must be required. In human catalase, the N148A, N148S, or N148D mutations only reduced rates to 20% of wild-type. The distal heme Asn is not essential in either catalase or cAOS. Its conservation throughout evolution may relate to a role in optimizing catalysis.  相似文献   
969.
α1-Acid glycoprotein (AAG), an acute phase component of the human serum, is a prominent member of the lipocalin family of proteins showing inflammatory/immunomodulatory activities and promiscuous drug binding properties. Both three-dimensional structure of AAG and its precise biological function are still unknown and only a few endogenous AAG ligands have been described to date. CD spectroscopic studies performed with commercial AAG and the separated genetic variants revealed high-affinity binding of biliverdin (BV) and biliverdin dimethyl ester to the ‘F1/S’ fraction of the protein. The preferential accommodation of the right-handed, P-helicity conformers of the pigments by the protein matrix resulted in strong induced CD activity, which was utilized for estimation of the binding parameters and to locate the binding site. It was concluded that both pigments are bound in the central β-barrel cavity of AAG, held principally by hydrophobic interactions. Possible biological implications of the BV binding ability of AAG with special emphasis on the heme oxygenase-1 pathway are discussed.  相似文献   
970.
Despite the widespread presence of the globin fold in most living organisms, only eukaryotic globins have been employed as model proteins in folding/stability studies so far. This work introduces the first thermodynamic and kinetic characterization of a prokaryotic globin, that is, the apo form of the heme-binding domain of flavohemoglobin (apoHmpH) from Escherichia coli. This bacterial globin has a widely different sequence but nearly identical structure to its eukaryotic analogues. We show that apoHmpH is a well-folded monomeric protein with moderate stability at room temperature [apparent ΔG°UN(w) = − 3.1 ± 0.3 kcal mol− 1; mUN = − 1.7 kcal mol− 1 M− 1] and predominant α-helical structure. Remarkably, apoHmpH is the fastest-folding globin known to date, as it refolds about 4- to 16-fold more rapidly than its eukaryotic analogues (e.g., sperm whale apomyoglobin and soybean apoleghemoglobin), populating a compact kinetic intermediate (βI = 0.9 ± 0.2) with significant helical content. Additionally, the single Trp120 (located in the native H helix) becomes locked into a fully native-like environment within 6 ms, suggesting that this residue and its closest spatial neighbors complete their folding at ultrafast (submillisecond) speed. In summary, apoHmpH is a bacterial globin that shares the general folding scheme (i.e., a rapid burst phase followed by slower rate-determining phases) of its eukaryotic analogues but displays an overall faster folding and a kinetic intermediate with some fully native-like traits. This study supports the view that the general folding features of bacterial and eukaryotic globins are preserved through evolution while kinetic details differ.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号