首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   37854篇
  免费   3170篇
  国内免费   1245篇
  2023年   537篇
  2022年   654篇
  2021年   1297篇
  2020年   1511篇
  2019年   1901篇
  2018年   1618篇
  2017年   1072篇
  2016年   1065篇
  2015年   1415篇
  2014年   2327篇
  2013年   2488篇
  2012年   1446篇
  2011年   1935篇
  2010年   1386篇
  2009年   1753篇
  2008年   1858篇
  2007年   1818篇
  2006年   1751篇
  2005年   1533篇
  2004年   1298篇
  2003年   1093篇
  2002年   948篇
  2001年   691篇
  2000年   630篇
  1999年   480篇
  1998年   523篇
  1997年   511篇
  1996年   545篇
  1995年   527篇
  1994年   505篇
  1993年   446篇
  1992年   475篇
  1991年   405篇
  1990年   385篇
  1989年   336篇
  1988年   295篇
  1987年   294篇
  1986年   239篇
  1985年   286篇
  1984年   281篇
  1983年   152篇
  1982年   254篇
  1981年   204篇
  1980年   185篇
  1979年   177篇
  1978年   117篇
  1977年   116篇
  1976年   108篇
  1973年   80篇
  1972年   61篇
排序方式: 共有10000条查询结果,搜索用时 343 毫秒
981.
Galactosyltransferase (GALTase) activity was measured in differentiating PC12 cells induced by either forskolin or 2-chloroadenosine. The specific activity of GALTase in whole cells and isolated Golgi membranes increased as early as 3 h after initiating treatment with 2-chloroadenosine, and maximal activity was reached at approximately 12 h. In two mutant PC12 cell lines deficient in protein kinase A, both forskolin and 2-chloroadenosine failed to increase GALTase activity. The adenosine A2 receptor antagonist, xanthine amine congener, prevented 2-chloroadenosine stimulation of GALTase, demonstrating that this adenosine derivative was mediating its effect via the A2 receptor. These data suggest that GALTase activity during PC12 cell differentiation is regulated by cyclic AMP (cAMP)- and protein kinase A-dependent processes. In support of the role of cAMP in regulating GALTase activity were studies with murine PC carcinoma cells demonstrating that the greatest stimulation of GALTase activity occurred with cells treated with both retinoic acid and dibutyryl cAMP.  相似文献   
982.
The distribution of inositol 1,4,5-trisphosphate (InsP3) 3-kinase mRNA in the rat brain is reported using oligonucleotides based on a cDNA clone sequence that encodes rat brain InsP3 3-kinase and the in situ hybridization technique. Moderate levels were found in CA2-4 pyramidal neurons, in the cortex, and in the striatum. The cerebellar granule cells, thalamus, hypothalamus, brainstem, spinal cord, and white matter tracts were almost negative. The levels of InsP3 3-kinase mRNA were highest in the hippocampal CA1 pyramidal neurons, granule cells of the dentate gyrus, and cerebellar Purkinje cells. These results contrast with the lower concentration of the InsP3 receptor already reported in the hippocampus versus the Purkinje cells and suggest a special role for inositol 1,3,4,5-tetrakisphosphate in Ammon's horn.  相似文献   
983.
Phenylephrine increased [3H]norepinephrine efflux and accumulation of cyclic AMP in cultured rat superior cervical ganglion cells superfused with Tyrode's solution. The purpose of this study was to determine the mechanism and relationship between these two events. Electrical stimulation (1-2 Hz), potassium chloride (50 mM), and the preferential alpha 1-adrenergic receptor agonist phenylephrine (1-100 microM) increased fractional tritium efflux, whereas methoxamine, cirazoline, and amidephrine were relatively ineffective. Phenylephrine, but not methoxamine and cirazoline, also increased cyclic AMP accumulation. Phenylephrine-induced tritium efflux was not altered by alpha- and beta-adrenergic receptor antagonists or by removal of extracellular calcium. Phenylephrine-induced cyclic AMP accumulation was blocked by the beta-adrenergic receptor antagonists propranolol and atenolol. Forskolin (10 microM) and the nonhydrolyzable cyclic AMP analogue 8-(4-chlorophenylthio)cyclic AMP (100 microM) had minimal effect on tritium efflux. However, phenylephrine-evoked increase in tritium efflux was dose dependently attenuated by the neuronal uptake blocker cocaine, and phenylephrine dose-dependently inhibited the incorporation of [3H]norepinephrine into neuronal stores. We conclude that the increase in tritium efflux induced by phenylephrine is independent of cyclic AMP accumulation and appears to be mediated by uptake of phenylephrine via the neuronal carrier-mediated amine transport process, which in turn promotes efflux of the adrenergic transmitter from its storage sites.  相似文献   
984.
Both nicotine and histamine have been reported to increase cyclic AMP levels in chromaffin cells by Ca(2+)-dependent mechanisms. The present study investigated whether Ca2+ was an adequate and sufficient signal for increasing cyclic AMP in cultured bovine adrenal medullary cells. Depolarization with 50 mM K+ caused a two- to three-fold increase in cellular cyclic AMP levels over 5 min, with no change in extracellular cyclic AMP. This response was abolished by omission of extracellular Ca2+ and by 100 microM methoxyverapamil, and was unaffected by 1 microM tetrodotoxin and by 1 mM isobutylmethylxanthine. Veratridine (40 microM) also increased cellular cyclic AMP levels by two- to fourfold. This response was abolished by either methoxyverapamil or tetrodotoxin. The Ca2+ ionophore A23187 (10-50 microM) had little or no effect on cellular cyclic AMP levels. When the concentration of K+ used to depolarize the cells was reduced to 12-15 mM, the catecholamine release was similar to that induced by 50 microM A23187, and the cyclic AMP response was almost abolished. The results suggest that Ca2+ entry into chromaffin cells is a sufficient stimulus for increasing cellular cyclic AMP production. The possible involvement of a Ca2+/calmodulin-dependent isozyme of adenylate cyclase is discussed.  相似文献   
985.
An epithelial sheet isolated from the trout saccular macula, highly enriched in acousticolateralis receptor cells (hair cells), has been analyzed for primary amine-containing compounds. The hair cell preparation, compared to the saccular nerve, was found to contain elevated levels of the presumptive receptoneural transmitter, glutamate, as well as beta-alanine, and components eluting in the positions of the standards phosphoserine and phosphoethanolamine on cation-exchange HPLC. Saccular nerve contained a different spectrum of primary amines and was elevated specifically in carnosine/homocarnosine. Acid hydrolysis of perchlorate extracts of both hair cell and nerve fractions yielded large amounts of histidine. For the saccular nerve fraction, production of histidine by acid hydrolysis was matched by production of beta-alanine and gamma-aminobutyric acid (GABA) and disappearance of carnosine/homocarnosine. The dipeptides carnosine and homocarnosine have been chromatographically resolved by expanded HPLC and found to be present in saccular nerve in a ratio of approximately 10:1, respectively. Production of histidine in the hair cell extract was not coupled with production of beta-alanine and GABA. The hair cell histidine-containing unknown, present in millimolar concentration, has been identified as N-acetylhistidine by the hydrolysis and rechromatography of fractions from cation-exchange HPLC. The large and specific presence of N-acetylhistidine in the hair cell preparation, together with electrophysiological evidence for its facilitatory action on afferent fibers in the frog semicircular canal, is suggestive of a role for this molecule as well as glutamate in acousticolateralis receptoneural transmission.  相似文献   
986.
Processing of Proenkephalin in Adrenal Chromaffin Cells   总被引:1,自引:0,他引:1  
The processing of proenkephalin was studied using [35S]methionine pulse-chase techniques in primary cultures of bovine adrenal medullary chromaffin cells. Following radiolabeling, proenkephalin-derived peptides were extracted from the cells and separated by reverse-phase HPLC. Fractions containing proenkephalin fragments were digested with trypsin and carboxypeptidase B to liberate Met-enkephalin sequences and subjected to a second HPLC step to demonstrate association of radiolabel with Met-enkephalin. Processing of proenkephalin is complete within 2 h of synthesis, suggesting completion at or soon after incorporation into storage vesicles. Pretreatment of the cells with nicotine, histamine, or vasoactive intestinal peptide to enhance the rate of proenkephalin synthesis failed to alter the time course of processing and had minimal effects on the distribution of products formed. Addition of tetrabenazine, an inhibitor of catecholamine uptake into chromaffin vesicles, during radiolabeling and a 6-h chase period caused enhanced proenkephalin processing. These results suggest that the full range of proenkephalin fragments normally found in the adrenal medulla (up to 23.3 kDa) represents final processing products of the tissue and that termination of processing may depend on the co-storage of catecholamines.  相似文献   
987.
The inositol 1,4,5-trisphosphate (IP3)-induced Ca2+ release was studied using streptolysin O-permeabilized bovine adrenal chromaffin cells. The IP3-induced Ca2+ release was followed by Ca2+ reuptake into intracellular compartments. The IP3-induced Ca2+ release diminished after sequential applications of the same amount of IP3. Addition of 20 microM GTP fully restored the sensitivity to IP3. Guanosine 5'-O-(3-thio)triphosphate (GTP gamma S) could not replace GTP but prevented the action of GTP. The effects of GTP and GTP gamma S were reversible. Neither GTP nor GTP gamma S induced release of Ca2+ in the absence of IP3. The amount of Ca2+ whose release was induced by IP3 depended on the free Ca2+ concentration of the medium. At 0.3 microM free Ca2+, a half-maximal Ca2+ no Ca2+ release was observed with 0.1 microM IP3; at this Ca2+ concentration, higher concentrations of IP3 (0.25 microM) were required to evoke Ca2+ release. At 8 microM free Ca2+, even 0.25 microM IP3 failed to induce release of Ca2+ from the store. The IP3-induced Ca2+ release at constant low (0.2 microM) free Ca2+ concentrations correlated directly with the amount of stored Ca2+. depending on the filling state of the intracellular compartment, 1 mol of IP3 induced release of between 5 and 30 mol of Ca2+.  相似文献   
988.
Diethyldithiocarbamic acid (DDC) potentiates in vivo neurotoxicity of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and in vitro neurotoxicity of 1-methyl-4-phenylpyridinium (MPP+). Male C57B1/6 mice were given two or five injections of MPTP (30 mg/kg i.p.) preceded 0.5 h by DDC (400 mg/kg i.p.). The mice were tested for catalepsy, akinesia, or motor activity during and after the period of dosing. Striatal and hippocampal tissues were obtained at 2 and 7 days following the last injection and evaluated for dopamine and norepinephrine levels, respectively. These same tissues were also analyzed for the levels of glial fibrillary acidic protein (GFAP), an astrocyte-localized protein known to increase in response to neural injury. Pretreatment with DDC potentiated the effect of MPTP in striatum and resulted in substantially greater dopamine depletion, as well as a more pronounced elevation in GFAP. In hippocampus, the levels of norepinephrine and GFAP were not different from controls in mice receiving only MPTP, but pretreatment with DDC resulted in a sustained depletion of norepinephrine and an elevation of GFAP, suggesting that damage was extended to this brain area by the combined treatment. Mice receiving MPTP preceded by DDC also demonstrated a more profound, but reversible, catalepsy and akinesia compared to those receiving MPTP alone. Systemically administered MPP+ decreased heart norepinephrine, but did not alter the striatal levels of dopamine or GFAP, and pretreatment with DDC did not alter these effects, but did increase lethality. DDC is known to increase brain levels of MPP+ after MPTP, but our data indicate that this is not due to a movement of peripherally generated MPP+ into CNS.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
989.
We have demonstrated that prostaglandin E2 (PGE2) treatment of bovine adrenal chromaffin cells results in a sustained elevation of intracellular Ca2+ concentration ([Ca2+]i) in these cells. Because the continued elevation of [Ca2+]i was dependent on extracellular Ca2+ concentration, it can be assumed that the PGE2-induced [Ca2+]i increase is due, at least in part, to an opening of membrane Ca2+ channels. In this study, we used electrophysiological methods to examine the mechanism of the PGE2-induced [Ca2+]i increase directly. Puff application of PGE2 to the external medium resulted in a prolonged depolarization in about half of the chromaffin cells examined. In whole-cell voltage-clamp recordings, an increase in inward current was observed over a 6-7 min period following bath application of PGE2 (greater than or equal to 10 microM), even in the absence of external Na+. This inward current was abolished when the recordings were made with the cells in a Ca2(+)-free medium, but it was not inhibited by Mn2+, a blocker of voltage-dependent Ca2+ channels. In cell-attached patch-clamp configuration, PGE2 produced an increase in the opening frequency of inward currents. The reversal potential of the PGE2-induced currents was about +40 mV, which is close to the reversal potential of the Ca2+ channel. The opening frequency was not affected by membrane potential changes. In inside-out patch-clamp configuration, inositol 1,4,5-trisphosphate (2 microM) added to the cytoplasmic side activated the Ca2(+)-channel currents, but PGE2 was ineffective when applied to the cytoplasmic side. These results suggest that PGE2 activates voltage-independent Ca2+ channels in chromaffin cells through a diffusible second messenger, possibly inositol 1,4,5-trisphosphate.  相似文献   
990.
Inhibitors of Urokinase and Thrombin in Cultured Neural Cells   总被引:2,自引:1,他引:1  
Recent studies have suggested important roles for certain proteases and protease inhibitors in the growth and development of the CNS. In the present studies, inhibitors of urokinase or thrombin in cultured neural cells and serum-free medium from the cells were identified by screening for components that formed sodium dodecyl sulfate-stable complexes with 125I-urokinase or 125I-thrombin. Rinsed glioblastoma possessed two components that complexed 125I-urokinase. One was type 1 plasminogen activator inhibitor (PAI-1), because the 125I-urokinase-containing complexes were immunoprecipitated with anti-PAI-1 antibodies. The other component formed complexes with 125I-urokinase that were not recognized by antibodies to PAI-1 or protease nexin-1 (PN-1). Its identity is unknown. In addition to these cell-bound components, the glioblastoma cells also secreted two inhibitors that formed complexes with 125I-urokinase; one was PAI-1, and the other was PN-1. The secreted PN-1 also formed complexes with 125I-thrombin. It was the only thrombin inhibitor detected in these studies. Human neuroblastoma cells did not contain components that formed detectable complexes with either 125I-urokinase or 125I-thrombin. However, human neuroblastoma cells did contain very low levels of PN-1 mRNA and PN-1 protein. Added PN-1 bound to the surface of both glioblastoma and neuroblastoma cells. This interaction accelerated the inhibition of thrombin by PN-1 and blocked the ability of PN-1 to form complexes with 125I-urokinase. Thus, cell-bound PN-1 was a specific thrombin inhibitor.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号