首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   291篇
  免费   54篇
  国内免费   4篇
  349篇
  2023年   3篇
  2022年   3篇
  2021年   6篇
  2020年   8篇
  2019年   9篇
  2018年   12篇
  2017年   8篇
  2016年   13篇
  2015年   15篇
  2014年   12篇
  2013年   17篇
  2012年   6篇
  2011年   12篇
  2010年   8篇
  2009年   15篇
  2008年   14篇
  2007年   15篇
  2006年   9篇
  2005年   21篇
  2004年   23篇
  2003年   13篇
  2002年   17篇
  2001年   11篇
  2000年   11篇
  1999年   15篇
  1998年   7篇
  1997年   10篇
  1996年   3篇
  1995年   3篇
  1994年   2篇
  1993年   4篇
  1992年   7篇
  1989年   1篇
  1987年   2篇
  1985年   2篇
  1984年   1篇
  1983年   2篇
  1982年   6篇
  1981年   1篇
  1980年   1篇
  1978年   1篇
排序方式: 共有349条查询结果,搜索用时 15 毫秒
31.
Gloverins are basic, glycine-rich and heat-stable antibacterial proteins (~14- kDa) in lepidopteran insects with activity against Escherichia coli, Gram-positive bacteria, fungi and a virus. Hyalophora gloveri gloverin adopts a random coil structure in aqueous solution but has α-helical structure in membrane-like environment, and it may interact with the lipid A moiety of lipopolysaccharide (LPS). Manduca sexta gloverin binds to the O-specific antigen and outer core carbohydrate of LPS. In the silkworm Bombyx mori, there are four gloverins with slightly acidic to neutral isoelectric points. In this study, we investigate structural and binding properties and activities of B. mori gloverins (BmGlvs), as well as correlations between structure, binding property and activity. Recombinant BmGlv1-4 were expressed in bacteria and purified. Circular dichroism (CD) spectra showed that all four BmGlvs mainly adopted random coli structure (>50%) in aqueous solution in regardless of pH, but contained α-helical structure in the presence of 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP), smooth and rough mutants (Ra, Rc and Re) of LPS and lipid A. Plate ELISA assay showed that BmGlvs at pH 5.0 bound to rough mutants of LPS and lipid A but not to smooth LPS. Antibacterial activity assay showed that positively charged BmGlvs (at pH 5.0) were active against E. coli mutant strains containing rough LPS but inactive against E. coli with smooth LPS. Our results suggest that binding to rough LPS is the prerequisite for the activity of BmGlvs against E. coli.  相似文献   
32.
The equilibrium structural ensemble of a 20-residue polyglutamic acid peptide (E(20)) was studied with FRET, circular dichroism, and molecular dynamics (MD) simulations. A FRET donor, o-aminobenzamide, and acceptor, 3-nitrotyrosine, were introduced at the N- and C-termini, respectively. Circular dichroism, steady state FRET, and time-resolved FRET measurements were employed to characterize the fraction helix and end-to-end distance under different pH conditions: pH 4 (60% alpha-helix), pH 6 (0% alpha-helix), and pH 9 (0% alpha-helix). At pH 4, the end-to-end distance was measured at 24 A and determined to be considerably less than the 31 A predicted for an alpha-helix of the same length. At pH 6 and 9, the end-to-end distance was measured at > 31 and 39 A respectively, both which are determined to be considerably greater than the 27 A predicted for a freely jointed random coil of the same length. To better understand the physical forces underlying the unusual helix-coil transition in this peptide, three theoretical MD models of E(20) were constructed: (1) a pure alpha-helix, (2) an alpha-helix with equivalent attractive intramolecular contacts, and (3) a weak alpha-helix with termini-weighted intramolecular contacts ("sticky ends"). Using MD simulations, the bent helix structure calculated from Model 3 was found to be the closest in agreement with the experimental data.  相似文献   
33.
Piezoelectric Pump Used in Bionic Underwater Propulsion Unit   总被引:1,自引:0,他引:1  
A new piezoelectric pump can pump liquid either forward or backward and adjust the flow rate. Thus an object can be driven forward or backward at different speeds. The driver of the pump, a circular piezoelectric plate, is modelled by Finite Element Method (FEM) in ANSYS and its performance is simulated and analyzed. The pump gives the best performance when the driving signals of the inlet and outlet valves have a bigger duty cycle and the plate has a higher voltage applied.  相似文献   
34.
35.
C D Andrew  S Penel  G R Jones  A J Doig 《Proteins》2001,45(4):449-455
A simplistic, yet often used, view of protein stability is that amino acids attract other amino acids with similar polarity, whereas nonpolar and polar side chains repel. Here we show that nonpolar/polar interactions, namely Val or Ile bonding to Lys or Arg in alpha-helices, can in fact be stabilizing. Residues spaced i, i + 4 in alpha-helices are on the same face of the helix, with potential to favorably interact and stabilize the structure. We observe that the nonpolar/polar pairs Ile-Lys, Ile-Arg, and Val-Lys occur in protein helices more often than expected when spaced i, i + 4. Partially helical peptides containing pairs of nonpolar/polar residues were synthesized. Controls with i, i + 5 spacing have the residues on opposite faces of the helix and are less helical than the test peptides with the i, i + 4 interactions. Experimental circular dichroism results were analyzed with helix-coil theory to calculate the free energy for the interactions. All three stabilize the helix with DeltaG between -0.14 and -0.32 kcal x mol(-1). The interactions are hydrophobic with contacts between Val or Ile and the alkyl groups in Arg or Lys. Side chains such as Lys and Arg can thus interact favorably with both polar and nonpolar residues.  相似文献   
36.
The B-box type 2 domain is a prominent feature of a large and growing family of RING, B-box, coiled-coil (RBCC) domain-containing proteins and is also present in more than 1500 additional proteins. Most proteins usually contain a single B-box2 domain, although some proteins contain tandem domains consisting of both type 1 and type 2 B-boxes, which actually share little sequence similarity. Recently, we determined the solution structure of B-box1 from MID1, a putative E3 ubiquitin ligase that is mutated in X-linked Opitz G/BBB syndrome, and showed that it adopted a betabetaalpha RING-like fold. Here, we report the tertiary structure of the B-box2 (CHC(D/C)C(2)H(2)) domain from MID1 using multidimensional NMR spectroscopy. This MID1 B-box2 domain consists of a short alpha-helix and a structured loop with two short anti-parallel beta-strands and adopts a tertiary structure similar to the B-box1 and RING structures, even though there is minimal primary sequence similarity between these domains. By mutagenesis, ESI-FTICR and ICP mass spectrometry, we show that the B-box2 domain coordinates two zinc atoms with a 'cross-brace' pattern: one by Cys175, His178, Cys195 and Cys198 and the other by Cys187, Asp190, His204, and His207. Interestingly, this is the first case that an aspartic acid is involved in zinc atom coordination in a zinc-finger domain, although aspartic acid has been shown to coordinate non-catalytic zinc in matrix metalloproteinases. In addition, the finding of a Cys195Phe substitution identified in a patient with X-linked Opitz GBBB syndrome supports the importance of proper zinc coordination for the function of the MID1 B-box2 domain. Notably, however, our structure differs from the only other published B-box2 structure, that from XNF7, which was shown to coordinate one zinc atom. Finally, the similarity in tertiary structures of the B-box2, B-box1 and RING domains suggests these domains have evolved from a common ancestor.  相似文献   
37.
38.
39.
40.
Protein folding     
The problem of protein folding is that how proteins acquire their native unique three‐dimensional structure in the physiological milieu. To solve the problem, the following key questions should be answered: do proteins fold co‐ or post‐translationally, i.e. during or after biosynthesis, what is the mechanism of protein folding, and what is the explanation for fast folding of proteins? The two first questions are discussed in the current review. The general lines are to show that the opinion, that proteins fold after they are synthesized is hardly substantiated and suitable for solving the problem of protein folding and why proteins should fold cotranslationally. A possible tentative model for the mechanism of protein folding is also suggested. To this end, a thorough analysis is made of the biosynthesis, delivery to the folding compartments, and the rates of the biosynthesis, translocation and folding of proteins. A cursory attention is assigned to the role of GroEL/ES‐like chaperonins in protein folding.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号