首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1466篇
  免费   137篇
  国内免费   16篇
  2024年   2篇
  2023年   10篇
  2022年   22篇
  2021年   26篇
  2020年   24篇
  2019年   47篇
  2018年   51篇
  2017年   30篇
  2016年   27篇
  2015年   40篇
  2014年   85篇
  2013年   103篇
  2012年   48篇
  2011年   92篇
  2010年   90篇
  2009年   80篇
  2008年   91篇
  2007年   81篇
  2006年   75篇
  2005年   71篇
  2004年   79篇
  2003年   77篇
  2002年   61篇
  2001年   33篇
  2000年   22篇
  1999年   46篇
  1998年   26篇
  1997年   34篇
  1996年   13篇
  1995年   19篇
  1994年   19篇
  1993年   15篇
  1992年   6篇
  1991年   11篇
  1990年   3篇
  1989年   4篇
  1988年   8篇
  1987年   2篇
  1986年   5篇
  1985年   4篇
  1984年   10篇
  1983年   4篇
  1982年   11篇
  1981年   1篇
  1980年   5篇
  1979年   2篇
  1976年   1篇
  1975年   2篇
  1974年   1篇
排序方式: 共有1619条查询结果,搜索用时 15 毫秒
991.
CD44 has been implicated in a diverse array of cell behaviors and in a diverse range of signaling pathway activations under physiological and pathophysiological conditions. We have documented a role for CD44 in mediating vascular barrier integrity via regulation of PECAM-1 (CD31) expression. We now report our findings on the roles of CD44 in modulating proliferation and apoptosis of microvascular endothelial cells via its modulation of CD31 and VE-cadherin expression and the Hippo pathway. In this report, we demonstrate persistent increased proliferation and reduced activations of both effector and initiator caspases in high cell density, postconfluent CD44 knock-out (CD44KO), and CD31KO cultures. We found that reconstitution with murine CD44 or CD31 restored the proliferative and caspase activation rates to WT levels. Moreover, we have confirmed that the CD31 ecto-domain plays a key role in specific caspase cascades as well as cell adhesion-mediated cell growth and found that CD31 deficiency results in a reduction in VE-cadherin expression. Last, we have shown that both CD44KO and CD31KO endothelial cells exhibit a reduced VE-cadherin expression correlating with increased survivin expression and YAP nuclear localization, consistent with inactivation of the Hippo pathway, resulting in increased proliferation and decreased apoptosis. These findings support the concept that CD44 mediates several of its effects on endothelia through modulation of adhesion protein expression, which, in addition to its known modulation of junctional integrity, matrix metalloproteinase levels and activation, interactions with cortical membrane proteins, and selected signaling pathways, plays a key role as a critical regulator of vascular function.  相似文献   
992.
Angiogenesis or the formation of new blood vessels is important in the growth and metastatic potential of various cancers. Therefore, understanding the mechanism(s) by which angiogenesis occurs can have important therapeutic implications in numerous malignancies. We and others have demonstrated that low molecular weight hyaluronan (LMW-HA, ∼2500 Da) promotes endothelial cell (EC) barrier disruption and angiogenesis. However, the mechanism(s) by which this occurs is poorly defined. Our data indicate that treatment of human EC with LMW-HA induced CD44v10 association with the receptor-tyrosine kinase, EphA2, transactivation (tyrosine phosphorylation) of EphA2, and recruitment of the PDZ domain scaffolding protein, PATJ, to the cell periphery. Silencing (siRNA) CD44, EphA2, PATJ, or Dbs (RhoGEF) expression blocked LMW-HA-mediated angiogenesis (EC proliferation, migration, and tubule formation). In addition, silencing EphA2, PATJ, Src, or Dbs expression blocked LMW-HA-mediated RhoA activation. To translate our in vitro findings, we utilized a novel anginex/liposomal targeting of murine angiogenic endothelium with either CD44 or EphA2 siRNA and observed inhibition of LMW-HA-induced angiogenesis in implanted Matrigel plugs. Taken together, these results indicate LMW-HA-mediated transactivation of EphA2 is required for PATJ and Dbs membrane recruitment and subsequent RhoA activation required for angiogenesis. These results suggest that targeting downstream effectors of LMW-HA could be a useful therapeutic intervention for angiogenesis-associated diseases including tumor progression.  相似文献   
993.
G protein-coupled receptors (GPCRs) are the largest family of cell-surface receptors in mammals and facilitate a range of physiological responses triggered by a variety of ligands. GPCRs were thought to function as monomers, however it is now accepted that GPCR homo- and hetero-oligomers also exist and influence receptor properties. The Schizosaccharomyces pombe GPCR Mam2 is a pheromone-sensing receptor involved in mating and has previously been shown to form oligomers in vivo. The first transmembrane domain (TMD) of Mam2 contains a small-XXX-small motif, overrepresented in membrane proteins and well-known for promoting helix–helix interactions. An ortholog of Mam2 in Saccharomyces cerevisiae, Ste2, contains an analogous small-XXX-small motif which has been shown to contribute to receptor homo-oligomerization, localization and function. Here we have used experimental and computational techniques to characterize the role of the small-XXX-small motif in function and assembly of Mam2 for the first time. We find that disruption of the motif via mutagenesis leads to reduction of Mam2 TMD1 homo-oligomerization and pheromone-responsive cellular signaling of the full-length protein. It also impairs correct targeting to the plasma membrane. Mutation of the analogous motif in Ste2 yielded similar results, suggesting a conserved mechanism for assembly. Using co-expression of the two fungal receptors in conjunction with computational models, we demonstrate a functional change in G protein specificity and propose that this is brought about through hetero-dimeric interactions of Mam2 with Ste2 via the complementary small-XXX-small motifs. This highlights the potential of these motifs to affect a range of properties that can be investigated in other GPCRs.  相似文献   
994.
995.
The conformational preferences of helix foldamers having different sizes of the H‐bonded pseudocycles have been studied for di‐ to octa‐γ2,3‐peptides based on 2‐(aminomethyl)cyclohexanecarboxylic acid (γAmc6) with a cyclohexyl constraint on the Cα–Cβ bond using density functional methods. The helical structures of the γAmc6 oligopeptides with homochiral configurations are known to be much stable than those with heterochiral configurations in the gas phase and in solution (chloroform and water). In particular, it is found that the (P/M)?2.514‐helices are most preferred in the gas phase and in chloroform, whereas the (P/M)?2.312‐helices become most populated in water due to the larger helix dipole moments. As the peptide sequence becomes longer, the helix propensities of 14‐ and 12‐helices are found to increase both in the gas phase and in solution. The γAmc6 peptides longer than octapeptide are expected to exist as a mixture of 12‐ and 14‐helices with the similar populations in water. The mean backbone torsion angles and helical parameters of the 14‐helix foldamers of γAmc6 oligopeptides are quite similar to those of 2‐aminocyclohexylacetic acid oligopeptides and γ2,3,4‐aminobutyric acid tetrapeptide in the solid state, despite the different substituents on the backbone. © 2013 Wiley Periodicals, Inc. Biopolymers 101: 87–95, 2014.  相似文献   
996.
《FEBS letters》2014,588(24):4573-4582
Loss of endothelial adherens junctions is involved in tumor metastasis. Here, we demonstrate that, in the metastatic Lu1205 melanoma cells, expression of the CD44 variant CD44v8-v10 induced junction disassembly and vascular endothelial (VE)-cadherin phosphorylation at Y658 and Y731. Short interfering RNA (siRNA)-mediated CD44 knockdown or sialic acid cleavage reversed these effects. Moreover, microspheres coated with recombinant CD44v8-v10 promoted endothelial junction disruption. Overexpression of CD44v8-v10 but not of standard CD44 (CD44s) promoted gap formation in the non-metastatic WM35 melanoma cells, whereas CD44 knockdown or neuraminidase treatment dramatically diminished melanoma transendothelial migration. Endothelial cells transfected with the phosphomimetic VE-cadherin mutant Y658E supported transmigration of CD44-silenced Lu1205 cells. Our findings imply that CD44 variant isoform (CD44v) but not CD44s regulates endothelial junction loss, promoting melanoma extravasation.  相似文献   
997.
Subpopulations of cancer stem cells (CSCs) or cancer stem-like cells (CSLCs) have been identified from most tumors, including pancreatic cancer (PC), and the existence of these cells is clinically relevant. Emerging evidence suggests that CSLCs participate in cell growth/proliferation, migration/invasion, metastasis, and chemo-radiotherapy resistance, ultimately contributing to poor clinical outcome. However, the pathogenesis and biological significance of CSLCs in PC has not been well characterized. In the present study, we found that isolated triple-marker-positive (CD44+/CD133+/EpCAM+) cells of human PC MiaPaCa-2 and L3.6pl cells behave as CSLCs. These CSLCs exhibit aggressive behavior, such as increased cell growth, migration, clonogenicity, and self-renewal capacity. The mRNA expression profiling analysis showed that CSLCs (CD44+/CD133+/EpCAM+) exhibit differential expression of more than 1,600 mRNAs, including FoxQ1, compared with the triple-marker-negative (CD44/CD133/EpCAM) cells. The knockdown of FoxQ1 by its siRNA in CSLCs resulted in the inhibition of aggressive behavior, consistent with the inhibition of EpCAM and Snail expression. Mouse xenograft tumor studies showed that CSLCs have a 100-fold higher potential for tumor formation and rapid tumor growth, consistent with overexpression of CSC-associated markers/mediators, including FoxQ1, compared with its parental MiaPaCa-2 cells. The inhibition of FoxQ1 attenuated tumor formation and growth, and expression of CSC markers in the xenograft tumor derived from CSLCs of MiaPaCa-2 cells. These data clearly suggest the role of differentially expressed genes in the regulation of CSLC characteristics, further suggesting that targeting some of these genes could be important for the development of novel therapies for achieving better treatment outcome of PC.  相似文献   
998.
The translocon recognizes transmembrane helices with sufficient level of hydrophobicity and inserts them into the membrane. However, sometimes less hydrophobic helices are also recognized. Positive inside rule, orientational preferences of and specific interactions with neighboring helices have been shown to aid in the recognition of these helices, at least in artificial systems. To better understand how the translocon inserts marginally hydrophobic helices, we studied three naturally occurring marginally hydrophobic helices, which were previously shown to require the subsequent helix for efficient translocon recognition. We find no evidence for specific interactions when we scan all residues in the subsequent helices. Instead, we identify arginines located at the N-terminal part of the subsequent helices that are crucial for the recognition of the marginally hydrophobic transmembrane helices, indicating that the positive inside rule is important. However, in two of the constructs, these arginines do not aid in the recognition without the rest of the subsequent helix; that is, the positive inside rule alone is not sufficient. Instead, the improved recognition of marginally hydrophobic helices can here be explained as follows: the positive inside rule provides an orientational preference of the subsequent helix, which in turn allows the marginally hydrophobic helix to be inserted; that is, the effect of the positive inside rule is stronger if positively charged residues are followed by a transmembrane helix. Such a mechanism obviously cannot aid C-terminal helices, and consequently, we find that the terminal helices in multi-spanning membrane proteins are more hydrophobic than internal helices.  相似文献   
999.
The increasing number of solved membrane protein structures has led to the recognition of a common feature in a large fraction of the small-molecule transporters: inverted repeat structures, formed by two fused homologous membrane domains with opposite orientation in the membrane. An evolutionary pathway in which the ancestral state is a single gene encoding a dual-topology membrane protein capable of forming antiparallel homodimers has been posited. A gene duplication event enables the evolution of two oppositely orientated proteins that form antiparallel heterodimers. Finally, fusion of the two genes generates an internally duplicated transporter with two oppositely orientated membrane domains. Strikingly, however, in the small multidrug resistance (SMR) family of transporters, no fused, internally duplicated proteins have been found to date. Here, we have analyzed fused versions of the dual-topology transporter EmrE, a member of the SMR family, by blue-native PAGE and in vivo activity measurements. We find that fused constructs give rise to both intramolecular inverted repeat structures and competing intermolecular dimers of varying activity. The formation of several intramolecularly and intermolecularly paired species indicates that a gene fusion event may lower the overall amount of active protein, possibly explaining the apparent absence of fused SMR proteins in nature.  相似文献   
1000.
When influenza A virus infects host cells, its integral matrix protein M2 forms a proton-selective channel in the viral envelope. Although X-ray crystallography and NMR studies using fragment peptides have suggested that M2 stably forms a tetrameric channel irrespective of pH, the oligomeric states of the full-length protein in the living cells have not yet been assessed directly. In the present study, we utilized recently developed stoichiometric analytical methods based on fluorescence resonance energy transfer using coiled-coil labeling technique and spectral imaging, and we examined the relationship between the oligomeric states of full-length M2 and its channel activities in living cells. In contrast to previous models, M2 formed proton-conducting dimers at neutral pH and these dimers were converted to tetramers at acidic pH. The antiviral drug amantadine hydrochloride inhibited both tetramerization and channel activity. The removal of cholesterol resulted in a significant decrease in the activity of the dimer. These results indicate that the minimum functional unit of the M2 protein is a dimer, which forms a complex with cholesterol for its function.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号