首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   298篇
  免费   21篇
  国内免费   17篇
  2023年   2篇
  2022年   5篇
  2021年   21篇
  2020年   31篇
  2019年   13篇
  2018年   21篇
  2017年   13篇
  2016年   19篇
  2015年   17篇
  2014年   22篇
  2013年   18篇
  2012年   9篇
  2011年   11篇
  2010年   10篇
  2009年   11篇
  2008年   8篇
  2007年   10篇
  2006年   15篇
  2005年   14篇
  2004年   3篇
  2003年   19篇
  2002年   7篇
  2001年   6篇
  2000年   8篇
  1999年   7篇
  1998年   1篇
  1997年   4篇
  1996年   3篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1991年   1篇
  1989年   1篇
  1987年   2篇
排序方式: 共有336条查询结果,搜索用时 31 毫秒
61.
While M13mpl8 double-stranded DNA was irradiated with ion beam, and transfected into E. coli JM103, a decrease of transfecting activity was discovered. The lacZ-mutation frequency at 20% survival could reach (3.6-16.8) × 104, about 2.3-10 times that of unirradiated M13DNA. Altogether, 27 lacZ~ mutants were select-ed, 10 of which were used for sequencing. 7 of the sequenced mutants show base changes in 250-bp region examined (the remaining 3 mutants probably have base changes outside the regions sequenced). 5 of the base-changed mutants contain more than one mutational base sites (some of them even have 5-6 mutational base sites in 250-bp region ex-amined) ; this dense distribution of base changes in polysites has seldom been seen in X-rays, γ-rays or UV induced DNA mutations. Our experiments also showed that the types of base changes include transitions( 50 % ), transversions (45% ) and deletion (5% ); no addition or duplication was observed. The transitions were mainly C→T and A→G; the transversion  相似文献   
62.
Summary The biological effects of irradiation with12C+5 ion beam on plant cells have been analyzed. Protoplasts and cell suspensions ofLavatera thuringiaca, and a somatic hybrid callus (Hibiscus rosa-sinensis +Lavatera thuringiaca), were irradiated with doses from 0.05 to 50 Gy, and the effects on cell growth, cell division, cell viability and embryogenesis rates were analyzed. Irradiation with12C+5 ion beam at relatively very low doses (5.0 Gy) significantly inhibited cell division, yet the survival rate and regeneration capability of the cells through somatic embryogenesis were conserved in more than 70 and 50 %, respectively. These results indicate that cell division is the most sensitive parameter to irradiation, accounting for the inhibition of colony formation and callus growth. The potential use of the12C+5 ion beam in asymmetric protoplast fusion experiments is discussed.  相似文献   
63.
We compare the thermoluminescence (TL) behavior of Ce3+ ion‐activated LiCaAlF6 exposed to γ‐rays and a carbon ion beam. The reported phosphor is synthesized using an in‐house precipitation method with varying concentrations of activator ion and is characterized by X‐ray diffraction (XRD) and TL. Rietveld refinement is performed to study the structural statistics. The TL glow curve consists of a prominent glow peak at 232°C with three shoulders at 115, 159 and 333°C when exposed to γ‐rays from a 60Co source. When exposed to a C5+ ion beam, the TL glow curve consists of five peaks with peak temperatures near 156, 221, 250, 287 and 330°C, and is found to vary slightly with changing fluence. Glow curve convolution deconvolution (GCCD) functions are applied to the TL curves for complete analysis of the glow curve structure and TL traps. The order of kinetics (b), activation energy (E) and frequency factor are determined using Chen's peak shape method and theoretical curves are drawn using GCCD functions. A track interaction model (TIM) is used to explain the sublinearity/saturation at higher fluences. Ion beam parameters are analyzed using Monte‐Carlo simulation‐based SRIM‐2013 code. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
64.

Aim

Using flattened and unflattened photon beams, this study investigated the spectral variations of surface photon energy and energy fluence in the bone heterogeneity and beam obliquity.

Background

Surface dose enhancement is a dosimetric concern when using unflattened photon beam in radiotherapy. It is because the unflattened photon beam contains more low-energy photons which are removed by the flattening filter of the flattened photon beam.

Materials and methods

We used a water and bone heterogeneity phantom to study the distributions of energy, energy fluence and mean energy of the 6 MV flattened and unflattened photon beams (field size = 10 cm × 10 cm) produced by a Varian TrueBEAM linear accelerator. These elements were calculated at the phantom surfaces using Monte Carlo simulations. The photon energy and energy fluence calculations were repeated with the beam angle turned from 0° to 15°, 30° and 45° in the water and bone phantom.

Results

Spectral results at the phantom surfaces showed that the unflattened photon beams contained more photons concentrated mainly in the low-energy range (0–2 MeV) than the flattened beams associated with a flattening filter. With a bone layer of 1 cm under the phantom surface and within the build-up region of the 6 MV photon beam, it is found that both the flattened and unflattened beams had slightly less photons in the energy range <0.4 MeV compared to the water phantom. This shows that the presence of the bone decreased the low-energy photon backscatters to the phantom surface. When both the flattened and unflattened photon beams were rotated from 0° to 45°, the number of photon and mean photon energy increased. This indicates that both photon beams became more hardened or penetrate when the beam angle increased. In the presence of bone, the mean energies of both photon beams increased. This is due to the absorption of low-energy photons by the bone, resulting in more beam hardening.

Conclusions

This study explores the spectral relationships of surface photon energy and energy fluence with bone heterogeneity and beam obliquity for the flattened and unflattened photon beams. The photon spectral information is important in studies on the patient''s surface dose enhancement using unflattened photon beams in radiotherapy.  相似文献   
65.
Smile esthetics has become increasingly important for orthodontic patients, thus prediction of post-treatment smile is necessary for a perfect treatment plan. In this study, with a combination of three-dimensional craniofacial data from the cone beam computed tomography and color-encoded structured light system, a novel method for smile prediction was proposed based on facial expression transfer, in which dynamic facial expression was interpreted as a matrix of facial depth changes. Data extracted from the pre-treatment smile expression record were applied to the post-treatment static model to realize expression transfer. Therefore smile esthetics of the patient after treatment could be evaluated in pre-treatment planning procedure. The positive and negative mean values of error for prediction accuracy were 0.9 and ? 1.1 mm respectively, with the standard deviation of ± 1.5 mm, which is clinically acceptable. Further studies would be conducted to reduce the prediction error from both the static and dynamic sides as well as to explore automatically combined prediction from the two sides.  相似文献   
66.
High-energy protons and carbon ions exhibit an inverse dose profile allowing for increased energy deposition with penetration depth. Additionally, heavier ions like carbon beams have the advantage of a markedly increased biological effectiveness characterized by enhanced ionization density in the individual tracks of the heavy particles, where DNA damage becomes clustered and therefore more difficult to repair, but is restricted to the end of their range. These superior biophysical and biological profiles of particle beams over conventional radiotherapy permit more precise dose localization and make them highly attractive for treating anatomically complex and radioresistant malignant tumors but without increasing the severe side effects in the normal tissue. More than half a century since Wilson proposed their use in cancer therapy, the effects of particle beams have been extensively investigated and the biological complexity of particle beam irradiation begins to unfold itself. The goal of this review is to provide an as comprehensive and up-to-date summary as possible of the different radiobiological aspects of particle beams for effective application in cancer treatment.  相似文献   
67.
The main purpose of this paper is to quantitatively study the possibility of delivering dose distributions of clinical relevance with laser-driven proton beams. A Monte Carlo application has been developed with the Geant4 toolkit, simulating the ELIMED (MEDical and multidisciplinary application at ELI-Beamlines) transport and dosimetry beam line which is being currently installed at the ELI-Beamlines in Prague (CZ). The beam line will be used to perform irradiations for multidisciplinary studies, with the purpose of demonstrating the possible use of optically accelerated ion beams for therapeutic purposes. The ELIMED Geant4-based application, already validated against reference transport codes, accurately simulates each single element of the beam line, necessary to collect the accelerated beams and to select them in energy. Transversal dose distributions at the irradiation point have been studied and optimized to try to quantitatively answer the question if such kind of beam lines, and specifically the systems developed for ELIMED in Prague, will be actually able to transport ion beams not only for multidisciplinary applications, such as pitcher-catcher nuclear reactions (e.g. neutrons), PIXE analysis for cultural heritage and space radiation, but also for delivering dose patterns of clinical relevance in a future perspective of possible medical applications.  相似文献   
68.
LiCoO2 electrodes contain three phases, or domains, each having specific‐intended functions: ion‐conducting pore space, lithium‐ion‐reacting active material, and electron conducting carbon‐binder domain (CBD). Transport processes take place in all domains on different characteristic length scales: from the micrometer scale in the active material grains through to the nanopores in the carbon‐binder phase. Consequently, more than one imaging approach must be utilized to obtain a hierarchical geometric representation of the electrode. An approach incorporating information from the micro‐ and nanoscale to calculate 3D transport‐relevant properties in a large‐reconstructed active domain is presented. Advantages of focused ion beam/scanning electron microscopy imaging and X‐ray tomography combined by a spatial stochastic model, validated with an artificially produced reference structure are used. This novel approach leads to significantly different transport relevant properties compared with previous tomographic approaches: nanoporosity of the CBD leads to up to 42% additional contact area between active material and pore space and increases ionic conduction by a factor of up to 3.6. The results show that nanoporosity within the CBD cannot be neglected.  相似文献   
69.
70.
近年来植物基因组学的研究发展迅速,特别是随着生物科学的发展进入后基因组时代,其研究方法和技术不断得到完善。该文综述了植物基因组学的研究方法和技术及其在植物离子诱变育种方面的应用,并对植物基因组学在离子诱变育种中的应用进行了展望。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号