首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   300篇
  免费   21篇
  国内免费   17篇
  338篇
  2023年   2篇
  2022年   7篇
  2021年   21篇
  2020年   31篇
  2019年   13篇
  2018年   21篇
  2017年   13篇
  2016年   19篇
  2015年   17篇
  2014年   22篇
  2013年   18篇
  2012年   9篇
  2011年   11篇
  2010年   10篇
  2009年   11篇
  2008年   8篇
  2007年   10篇
  2006年   15篇
  2005年   14篇
  2004年   3篇
  2003年   19篇
  2002年   7篇
  2001年   6篇
  2000年   8篇
  1999年   7篇
  1998年   1篇
  1997年   4篇
  1996年   3篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1991年   1篇
  1989年   1篇
  1987年   2篇
排序方式: 共有338条查询结果,搜索用时 15 毫秒
251.
赵平  曾小平  蔡锡安  彭少麟 《广西植物》2002,22(6):485-489-489
介绍了当今较先进的数字植物冠层图象分析仪的理论基础、实际应用的特点 ,测定了南亚热带丘陵地区 8种森林类型 (包括人工林和自然次生林 )的叶面积指数、太阳直射透过系数等群落冠层特征 ,同时测定一由荒坡草地自然发育而成的灌木草坡群落的叶面积指数。根据测定数据比较分析了不同人工林群落 1 1a发展这些特征的变化 ,并与次生自然林的测定数据进行比较 ,同时还对 1 1a与 1 4a树龄马占相思林林冠变化进行比较分析。  相似文献   
252.
俄罗斯科学院的技术人员完成了用电子束将蛋白酶固定在聚乙烯氧化物上,从而获得多用途活性生物聚合物的研究,被固定的蛋白酶热稳定性(80℃)比游离酶(60℃)高,PH适用范围大,且不含过氧化物和长命自由基。  相似文献   
253.
碳离子束辐照拟南芥介导外源基因转移的研究   总被引:2,自引:0,他引:2  
采用700keV或4.0MeV碳离子束辐照拟南芥种子,通过对样品的显微摄影,发现随着辐照剂量的增加,碳离子束对种子表面的损伤逐渐加剧,特别是在4.0MeV碳离子束辐照下,当剂量达到1×1014ions·cm-2后,种皮局部逐渐被刻蚀殆尽,甚至造成种皮局部破裂。对拟南芥种子进行台盼蓝染色后的显微观测显示,碳离子束辐照可以导致拟南芥种皮细胞着染,在剂量较大的情况下,部分皮下细胞也可着染,表明碳离子束可作用到皮下细胞,为外源基因提供导入的通道。GUS基因导入后的组织化学检测表明:质粒pCAMBIA1301能够进入4.0MeV碳离子束辐照后的拟南芥种子,并在种子和幼芽中获得瞬间表达。  相似文献   
254.
Biological tiny structures have been observed on many kinds of surfaces such as lotus leaves and insect wings,whichenhance the hydrophobicity of the natural surfaces and play a role of self-cleaning.We presented the fabrication technology of asuperhydrophobic surface using high energy ion beam.Artificial insect wings that mimic the morphology and the superhydrophobocityof cicada’s wings were successfully fabricated using argon and oxygen ion beam treatment on a polytetrafluoroethylene(PTFE)film.The wing structures were supported by carbon/epoxy fibers as artificial flexible veins that were bondedthrough an autoclave process.The morphology of the fabricated surface bears a strong resemblance to the wing surface of acicada,with contact angles greater than 160°,which could be sustained for more than two months.  相似文献   
255.
AimThe purpose of this report is to store the information of the pre-planning and compare this data with the actual data of the procedure.BackgroundCurrently, intraoperative electron beam radiotherapy clinical practice lacks a treatment planning system.Materials and methodsThe RADIANCE concept approaches treatment planning by providing the user with a navigation platform based on a three-dimensional imaging system in which the radiation oncologist can target the tumor and risk areas in different sections (axial, coronal, sagittal), while a volume rendering engine displays a 3D image that is automatically updated as we make any changes of the space. Finally, the user may select the parameters of the applicator, energy and dose of treatment to optimize the procedure. Six cases are clinically described and illustrated.ResultsRADIANCE is a useful tool in planning IOERT. Tumor segmentation and risk areas with minimal guide in the selection of parameters for the applicator. Complex locations are challenging, where the experience and skill of the radiation oncologist is necessary to optimize the process. New developments include imaging innovated uses. Intraoperative imaging will approach reality and allow real time, dosimetry estimations, stereotactic recognition of patient and tumor bed position, will guide automatization of radiation beam recognition and pre-robotic arrangements with linear accelerator movements.ConclusionsRADIANCE offers a new imaging expansion for IOERT, in the context of a multidisciplinary approach to optimize and define the treatment parameters to approximate the actual treatment radiotherapy procedure.  相似文献   
256.
IntroductionIn the 7 years since our facility opened, we have treated >2000 patients with pencil-beam scanned carbon-ion beam therapy.MethodsTo summarize treatment workflow, we evaluated the following five metrics: i) total number of treated patients; ii) treatment planning time, not including contouring procedure; iii) quality assurance (QA) time (daily and patient-specific); iv) treatment room occupancy time, including patient setup, preparation time, and beam irradiation time; and v) daily treatment hours. These were derived from the oncology information system and patient handling system log files.ResultsThe annual number of treated patients reached 594, 7 years from the facility startup, using two treatment rooms. Mean treatment planning time was 6.0 h (minimum: 3.4 h for prostate, maximum: 9.3 h for esophagus). Mean time devoted to daily QA and patient-specific QA were 22 min and 13.5 min per port, respectively, for the irradiation beam system. Room occupancy time was 14.5 min without gating for the first year, improving to 9.2 min (8.2 min without gating and 12.8 min with gating) in the second. At full capacity, the system ran for 7.5 h per day.ConclusionsWe are now capable of treating approximately 600 patients per year in two treatment rooms. Accounting for the staff working time, this performance appears reasonable compared to the other facilities.  相似文献   
257.
Porous hydrogels provide an excellent environment for cell growth and tissue regeneration, with high permeability for oxygen, nutrients, and other water‐soluble metabolites through their high water‐content matrix. The ability to image three‐dimensional (3D) cell growth is crucial for understanding and studying various cellular activities in 3D context, particularly for designing new tissue engineering scaffold, but it is still challenging to study cell‐biomaterial interfaces with high resolution imaging. We demonstrate using focused ion beam (FIB) milling, electron imaging, and associated microanalysis techniques that novel 3D characterizations can be performed effectively on cells growing inside 3D hydrogel scaffold. With FIB‐tomography, the porous microstructures were revealed at nanometer resolution, and the cells grown inside. The results provide a unique 3D measurement of hydrogel porosity, as compared with those from porosimetry, and offer crucial insights into material factors affecting cell proliferation at specific regions within the scaffold. We also proved that high throughput correlative imaging of cell growth is viable through a silicon membrane based environment. The proposed approaches, together with the protocols developed, provide a unique platform for analysis of the microstructures of novel biomaterials, and for exploration of their interactions with the cells as well. Biotechnol. Bioeng. 2013; 110: 318–326. © 2012 Wiley Periodicals, Inc.  相似文献   
258.
Patch-clamp is an important method to monitor the electrophysiological activity of cells and the role of pharmacological compounds on specific ion channel proteins. In recent years, planar patch-clamp chips have been developed as a higher throughput approach to the established glass-pipette method. However, proper conditions to optimize the high resistance cell-to-probe seals required to measure the small currents resulting from ion channel activity are still the subject of conjecture. Here, we report on the design of multiple-aperture (sieve) chips to rapidly facilitate assessment of cell-to-aperture interactions in statistically significant numbers. We propose a method to pre-screen the quality of seals based on a dye loading protocol through apertures in the chip and subsequent evaluation with fluorescence confocal microscopy. We also show the first scanning electron micrograph of a focused ion beam section of a cell in a patch-clamp chip aperture.  相似文献   
259.
Recent recordings of dolphin echolocation using a dense array of hydrophones suggest that the echolocation beam is dynamic and can at times consist of a single dominant peak, while at other times it consists of forward projected primary and secondary peaks with similar energy, partially overlapping in space and frequency bandwidth. The spatial separation of the peaks provides an area in front of the dolphin, where the spectral magnitude slopes drop off quickly for certain frequency bands. This region is potentially used to optimize prey localization by directing the maximum pressure slope of the echolocation beam at the target, rather than the maximum pressure peak. The dolphin was able to steer the beam horizontally to a greater extent than previously described. The complex and dynamic sound field generated by the echolocating dolphin may be due to the use of two sets of phonic lips as sound sources, or an unknown complexity in the sound propagation paths or acoustic properties of the forehead tissues of the dolphin.  相似文献   
260.
PurposeTo present a planning strategy for proton pencil-beam scanning when titanium implants need to be crossed by the beam.MethodsWe addressed three issues: the implementation of a CT calibration curve to assign to titanium the correct stopping power; the effect of artefacts on CT images and their reduction by a dedicated algorithm; the differences in dose computation depending on the dose engine, pencil-beam vs Monte-Carlo algorithms. We performed measurement tests on a simple cylinder phantom and on a real implant. These phantoms were irradiated with three geometries (single spots, uniform mono-energetic layer and uniform box), measuring the exit dose either by radio-chromic film or multi-layer ionization chamber. The procedure was then applied on two patients treated for chordoma.ResultsWe had to set in the calibration curve a mass density equal to 4.37 g/cm3 to saturated Hounsfield Units, in order to have the correct stopping power assigned to titanium in TPS. CT artefact reduction algorithm allowed a better reconstruction of the shape and size of the implant. Monte-Carlo resulted accurate in computing the dose distribution whereas the pencil-beam algorithm failed due to sharp density interfaces between titanium and the surrounding material. Finally, the treatment plans obtained on two patients showed the impact of the dose engine algorithm, with 10–20% differences between pencil-beam and Monte-Carlo in small regions distally to the titanium screws.ConclusionThe described combination of CT calibration, artefacts reduction and Monte-Carlo computation provides a reliable methodology to compute dose in patients with titanium implants.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号