首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25089篇
  免费   2065篇
  国内免费   1999篇
  29153篇
  2024年   126篇
  2023年   590篇
  2022年   693篇
  2021年   966篇
  2020年   1014篇
  2019年   1183篇
  2018年   1058篇
  2017年   938篇
  2016年   966篇
  2015年   1215篇
  2014年   1494篇
  2013年   2270篇
  2012年   1061篇
  2011年   1210篇
  2010年   862篇
  2009年   1357篇
  2008年   1415篇
  2007年   1342篇
  2006年   1274篇
  2005年   1002篇
  2004年   941篇
  2003年   786篇
  2002年   651篇
  2001年   560篇
  2000年   481篇
  1999年   415篇
  1998年   417篇
  1997年   407篇
  1996年   317篇
  1995年   273篇
  1994年   245篇
  1993年   246篇
  1992年   199篇
  1991年   167篇
  1990年   148篇
  1989年   122篇
  1988年   104篇
  1987年   104篇
  1986年   73篇
  1985年   93篇
  1984年   64篇
  1983年   49篇
  1982年   79篇
  1981年   51篇
  1980年   38篇
  1979年   32篇
  1978年   16篇
  1977年   14篇
  1976年   10篇
  1974年   4篇
排序方式: 共有10000条查询结果,搜索用时 9 毫秒
51.
Apples ( Malus domestica Borkh.) were heated for 4 days at 38°C immediately after harvest and then placed at 20°C for 7–10 days. Protein synthesis, ethylene production and fruit softening were reversibly inhibited by the heat treatment. Fruit respiration, membrane permeability and chlorophyll degradation in the fruit peel were enhanced during the treatment. The heat-treated apples ripened normally but more slowly than untreated apple We hypothesize that heat treatment differentially affects processes which normally increase simultaneously during fruit ripening, by inhibiting those processes which require tie novo protein synthesis and enhancing those that do not.  相似文献   
52.
Abstract. Kosteletzkya virginica (L.) Presl., a dicot halophyte native to brackish tidal marshes, was grown on nutrient solution containing 0. 85, 170 or 255 mol m 3 NaCl, and the effects of external salinity on root growth, ion and water levels, and lipid content were examined in successive harvests. Root growth paralleled shoot growth trends, with some enhancement observed at 85 mol m 3 NaCl and a reduction noted at the higher salinities. Root Na+ content increased with increasing external NaCl, but remained constant with time for each treatment. K+ content, although lower in salt-grown plants after 14 d salinization, subsequently increased to levels comparable to unsalinized plants. A strong K+ affinity was reflected in the increased K+/Na+ selectivity of salt-grown plants and by their low Na+/K+ ratios. Cl levels rose in salinized plants and values were double or more those for Na+, indicating the possibility of a sodium-excluding mechanism in roots. Root phospholipids and sterols, principal membrane constituents, were maintained or elevated and the free sterol/phospholipids ratio increased in salinized K. virginica plants, suggesting retention of overall membrane structure and decreased permeability. This response, considered in light of root calcium maintenance and high potassium levels, suggests that salinity-induced changes in membrane lipid composition may be important in preventing K+ leakage from cells.  相似文献   
53.
54.
The functional properties of the anaerobic responsive element (ARE) of the maize Adh1 gene have been analysed using a transient expression assay in electroporated maize protoplasts. The ARE functions in both orientations although inversion of the ARE sequence relative to the TATA box element produces slightly weaker promoter activity under anaerobic conditions and elevated expression under aerobic conditions. Promoter activity under anaerobic conditions is proportional to the number of complete ARE sequences in the Adh1 promotor. The ARE contains two sub-regions and dimers of sub-region II are as efficient as the wild-type sequence in activating gene expression under anaerobic conditions. However, sub-region I dimers do not appear capable of inducing gene expression in response to anaerobic stress. We conclude that sub-region II is essential for anaerobic induction of gene expression. Reporter gene expression remains constant when the spacing between sub-regions of the ARE is increased up to at least 64 bp, but increased spacing of 136 bp or greater abolishes expression in both aerobic and anaerobic conditions, indicating that a close association of the two sub-regions is required both for anaerobic responsiveness and for maximal levels of aerobic gene expression. When the ARE is placed upstream of position –90 of the CaMV 35S promoter, the ARE produces a high level of expression in both aerobic and anaerobic conditions. The general enhancement of gene expression driven by the hybrid ARE/35S promoter in aerobic conditions requires an intact sub-region II motif since mutation or deletion of sub-region II from the hybrid promoter reduces the level of expression to that observed for the truncated 35S promoter alone. In addition, mutation of the sub-region I sequences in the ARE/35S hybrid promoter does not significantly reduce expression in aerobic conditions, relative to pARE/35S(-90), suggesting that sub-region I does not contribute to this general enhancer function.  相似文献   
55.
The petunia nuclear gene which encodes the chloroplast isozyme of superoxide dismutase, SOD-1, has been fused with an efficient rbcS promoter fragment and 3 flanking region and introduced into tobacco and tomato cells. Transformed plants carrying this chimeric gene have up to 50-fold the levels of SOD-1 which occur in wild-type plants. However, tobacco plants with 30-to 50-fold the normal SOD-1 activity do not exhibit resistance to the light-activated herbicide paraquat. Similarly, tomato plants with 2-to 4-fold increases in SOD-1 do not exhibit tolerance to photoinhibitory conditions known to increase superoxide levels (high light, low temperatures and low CO2 concentrations). Our data indicate that increasing the chloroplastic SOD level in a plant cell is not sufficient to reduce the toxicity of superoxide.  相似文献   
56.
Arabidopsis thaliana seedlings as measured by an electrolyte leakage assay, have been found to be extremely sensitive to high temperature stress as compared to a high temperature tolerant variety (Tracy) of soybean. Over 50% ion leakage occurred in Arabidopsis leaves during a 15-minute exposure to 50°C, indicating a heat killing time of less than 15 minutes. In contrast, the heat killing time for soybean at 50°C was over five times longer. When soybean or Arabidopsis seedlings in culture plates were exposed to 37°C for 2 hours and then returned to 23°C, they suffered no apparent short-term or long-term damage. Soybean seedlings given a 42°C, treatment for 2 hours also showed no damage. Arabidopsis seedlings after a 42°C treatment for 2 hours showed no apparent immediate damage, but 48 hours after return to 23°C severe damage symptoms were visible and after 96 hours all the seedlings were dead. Both soybean and Arabidopsis seedlings synthesize heat shock proteins (hsps) when exposed to 42°C for 2 hours. The hsps synthesized are of similar molecular weights, although the relative abundances of the different size classes are very different in the two plants. Even though hsps are produced in Arabidopsis seedlings after a 2 hour exposure to 42°C their presence is not sufficient for the seedlings to recover from the effects of rhe heat shock when returned to 23°C. Our results show that Arabidopsis has a heat sensitive genotype. This along with its other characteristics should make it a good model system in which to assay in transgenic plants, the functions of homologous and heterologous genes that might be candidates for determining heat tolerance in plants.  相似文献   
57.
Growth of Euglena gracilis Z Pringsheim under photoheterotrophic conditions in a nitrogen-deprived medium resulted in progressive loss of chloroplastic material until total bleaching of the cells occurred. Biochemical analysis and ultrastructural observation of the first stages of the starvation process demonstrated an early lag phase (from 0 to 9 h) in which cells increased in size, followed by a period of cell division, apparently supported by the mobilization of some chloroplastic proteins such as the photosynthetic CO2-fixing enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase. The degradation of the enzyme started after 9 h of starvation and was preceded by a transient concentration of this protein in pyrenoidal structures. Protein nitrogen and photosynthetic pigments as well as number of chloroplasts per cell decreased during proliferation through mere distribution among daughter cells. However, after 24 h, when cell division had almost ceased, there was a slow but steady decline of photosynthetic pigments. This was paralleled by observable ultrastructural changes including progressive loss of chloroplast structure and accumulation of paramylon granules and lipid globules in the cytoplasm. These findings reinforce the role of chloroplastic materials as a nitrogen source during starvation of E. gracilis in a carbon-rich medium. The excess of ribulose-1,5-bisphosphate carboxylase/oxygenase acts as a first reservoir that, once exhausted, is superseded by the generalized disassembly of the photosynthetic structures, if the adverse environment persists more than 24 h.  相似文献   
58.
Interactions between drought stress and inbreeding depression were studied in Lychnis flos-cuculi. Four inbreeding levels (F = 0, 0.25, 0.50 and 0.75), and three watering treatments were used. Performance was scored for germination rate and proportion, survival, plant size, proportion of plants flowering, flowering date, stem height, number of flowers, flower size, anther weight, fruiting proportion and number of capsules. Multiplicative fitness values were estimated from these traits. Inbreeding affected most of the traits studied, and a severe inbreeding depression was found for the combined fitness estimates. The higher inbreeding depression found here relative to the same family groups in a former experiment may reflect greater dominance and suppression in the present experiment at higher density.  相似文献   
59.
60.
Abstract: Reactive oxygen species have been implicated in neuronal injury associated with various neuropathological disorders. However, little is known regarding the relationship between antioxidant enzyme capacity and resultant toxicity. The antioxidant pathways of primary cerebrocortical cultures were directly examined using a novel technique that measures pentose phosphate pathway (PPP) activity, which is enzymatically coupled to glutathione peroxidase (GPx) detoxification of hydrogen peroxide (H2O2). PPP activity was quantified from data obtained by gas chromatography/mass spectrometry analysis of released labeled lactate following metabolic degradation of [1,6-13C2,6,6-2H2]glucose by cerebrocortical cultures. The antioxidant capacity of these cultures was systematically evaluated using H2O2, and the resultant toxicity was quantified by lactate dehydrogenase release. Exposure of primary mixed and purified astrocytic cultures to H2O2 caused stimulation of PPP activity in a concentration-dependent fashion from 0.25 to 22.2% and from 6.9 to 66.7% of glucose metabolized to lactate through the PPP, respectively. In the mixed cultures, chelation of iron before H2O2 exposure was protective and resulted in a correlation between PPP saturation and toxicity. Conversely, addition of iron, inhibition of GPx, or depletion of glutathione decreased H2O2-induced PPP stimulation and increased toxicity. These results implicate the Fenton reaction, reflect the pivotal role of GPx in H2O2 detoxification, and contribute to our understanding of the etiological role of free radicals in neuropathological conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号