首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4535篇
  免费   391篇
  国内免费   361篇
  2024年   7篇
  2023年   76篇
  2022年   59篇
  2021年   115篇
  2020年   155篇
  2019年   158篇
  2018年   171篇
  2017年   128篇
  2016年   147篇
  2015年   185篇
  2014年   229篇
  2013年   292篇
  2012年   180篇
  2011年   193篇
  2010年   158篇
  2009年   217篇
  2008年   260篇
  2007年   200篇
  2006年   225篇
  2005年   176篇
  2004年   172篇
  2003年   155篇
  2002年   155篇
  2001年   156篇
  2000年   119篇
  1999年   97篇
  1998年   129篇
  1997年   107篇
  1996年   103篇
  1995年   92篇
  1994年   82篇
  1993年   76篇
  1992年   62篇
  1991年   49篇
  1990年   52篇
  1989年   35篇
  1988年   27篇
  1987年   38篇
  1986年   19篇
  1985年   30篇
  1984年   30篇
  1983年   29篇
  1982年   39篇
  1981年   22篇
  1980年   17篇
  1979年   24篇
  1978年   13篇
  1977年   12篇
  1976年   8篇
  1974年   3篇
排序方式: 共有5287条查询结果,搜索用时 15 毫秒
101.
Increasing exposure to climate warming-related drought and heat threatens forest vitality in many regions on earth, with the trees' vulnerability likely depending on local climatic aridity, recent climate trends, edaphic conditions, and the drought acclimatization and adaptation of populations. Studies exploring tree species' vulnerability to climate change often have a local focus or model the species' entire distribution range, which hampers the separation of climatic and edaphic drivers of drought and heat vulnerability. We compared recent radial growth trends and the sensitivity of growth to drought and heat in central populations of a widespread and naturally dominant tree species in Europe, European beech (Fagus sylvatica), at 30 forest sites across a steep precipitation gradient (500–850 mm year−1) of short length to assess the species' adaptive potential. Size-standardized basal area increment remained more constant during the period of accelerated warming since the early 1980s in populations with >360 mm growing season precipitation (April–September), while growth trends were negative at sites with <360 mm. Climatic drought in June appeared as the most influential climatic factor affecting radial growth, with a stronger effect at drier sites. A decadal decrease in the climatic water balance of the summer was identified as the most important factor leading to growth decline, which is amplified by higher stem densities. Inter-annual growth variability has increased since the early 1980s, and variability is generally higher at drier and sandier sites. Similarly, within-population growth synchrony is higher at sandier sites and has increased with a decrease in the June climatic water balance. Our results caution against predicting the drought vulnerability of trees solely from climate projections, as soil properties emerged as an important modulating factor. We conclude that beech is facing recent growth decline at drier sites in the centre of its distribution range, driven by climate change-related climate aridification.  相似文献   
102.
Climate change and urbanisation are among the most pervasive and rapidly growing threats to biodiversity worldwide. However, their impacts are usually considered in isolation, and interactions are rarely examined. Predicting species' responses to the combined effects of climate change and urbanisation, therefore, represents a pressing challenge in global change biology. Birds are important model taxa for exploring the impacts of both climate change and urbanisation, and their behaviour and physiology have been well studied in urban and non-urban systems. This understanding should allow interactive effects of rising temperatures and urbanisation to be inferred, yet considerations of these interactions are almost entirely lacking from empirical research. Here, we synthesise our current understanding of the potential mechanisms that could affect how species respond to the combined effects of rising temperatures and urbanisation, with a focus on avian taxa. We discuss potential interactive effects to motivate future in-depth research on this critically important, yet overlooked, aspect of global change biology. Increased temperatures are a pronounced consequence of both urbanisation (through the urban heat island effect) and climate change. The biological impact of this warming in urban and non-urban systems will likely differ in magnitude and direction when interacting with other factors that typically vary between these habitats, such as resource availability (e.g. water, food and microsites) and pollution levels. Furthermore, the nature of such interactions may differ for cities situated in different climate types, for example, tropical, arid, temperate, continental and polar. Within this article, we highlight the potential for interactive effects of climate and urban drivers on the mechanistic responses of birds, identify knowledge gaps and propose promising future research avenues. A deeper understanding of the behavioural and physiological mechanisms mediating species' responses to urbanisation and rising temperatures will provide novel insights into ecology and evolution under global change and may help better predict future population responses.  相似文献   
103.
Summary A method is described to determine power of heat-time curves by conduction microcalorimetry in order to monitor the viability and ability of a thermotolerantBacillus strain to secrete acetic acid both during exponential growth and during stationary-phase. In this system secreted acetic acid is neutralized by an insoluble source of lime (dolime) which results in a poor correlation between optical density and culture dry weight. As an alternative, cells and residual dolime were rapidly resuspended in isothermal fresh medium with glucose in a conduction microcalorimeter. Heat evolution was rapid over a period of 200–800 s. Steady state heat evolution rate decreased as a function of culture time and did not correlate with: 1) specific growth rate: 2) viable cell number: 3) glucose consumption rate; or 4) acetic acid secretion rate. Glucose consumption and acetic acid secretion during the stationary growth phase were correlated with specific heat evolution rate. These initial results indicate that this technique may be useful for further development as an on-line flow or stopped-flow method to monitor the physiology of bacilli in response to nutrient depletion or growth inhibition.  相似文献   
104.
A 395 bp fragment located downstream from the soybean heat shock geneGmhsp 17.6-L exhibits several characteristics of scaffold attachment region (SAR) sequences. It contains matrix consensus elements, a topoisomerase II binding sequence and it associates with the isolated nuclear scaffold of soybeanin vitro. Chimaeric genes containing the SARL fragment either at one side (5 or 3) or at both sides of a heat shock promoter-regulated -glucuronidase reporter gene were constructed. A five-to nine-fold increase of heat-inducible -glucuronidase activity was observed in transgenic tobacco plants containing constructs with SARL fragments either at both sides or with at least one SARL copy located upstream from the reporter gene. The gene copy number is positively correlated with the level of heat-inducible reporter gene activity in these. plants but positional effects are not entirely eliminated. Thus, SAR sequences may potentially be used to increase gene expression, via as yet unknown mechanisms, and to reduce adverse effects on the expression of multiple gene copies in transgenic plants.  相似文献   
105.
【背景】高温引起的微生物活性降低是限制园林绿化废弃物堆肥过程中木质素降解的主要因素。【目的】驯化一株木质素降解菌芽孢杆菌NO.2,提高其在高温下的微生物活性,探究其生长情况及酶学特性。【方法】采用温度梯度方法驯化菌株,以菌株生长曲线、酶活力、木质素降解率为评价指标,探究驯化前后菌株间差异,以及驯化后菌株所产木质素降解酶的酶促反应温度和pH范围。【结果】与原菌株相比,驯化后菌株在60℃培养时最大生物量间差异不显著;漆酶(laccase,Lac)、锰过氧化物酶(manganeseperoxidase,MnP)和木质素过氧化物酶(ligninperoxidase,LiP)酶活力得到进一步提高,分别提高了30.75%、35.98%和29.62%,木质素降解率提高60.52%。酶学性质研究表明,驯化后菌株所产Lac、MnP和LiP在20-60℃、pH 3.0-9.0范围内酶活力均较高,而且具有较好的稳定性,稳定性依次为Lac>LiP>MnP。【结论】温度梯度驯化方法可有效提高微生物对高温环境的适应性,扩大木质素降解酶的酶促反应温度和pH范围,在进一步自主研制专用降解园林废弃物微生物菌...  相似文献   
106.
Global climate change is projected to increase the incidence of heat waves, their magnitude and duration resulting in insects experiencing increasing environmental stress in both natural and managed ecosystems. While studies on insect thermal tolerance are rapidly increasing, variation across developmental or juvenile stress cross-stage effects within and across generations remain largely unexplored. Yet in holometabolous insects, heat stress at an early developmental stage may influence performance and survival during later stages. Here, we investigated the effects of pupal mild heat stress on the performance of laboratory-reared adult Bactrocera dorsalis (Hendel) (Diptera: Tephritidae) measured as longevity, critical thermal maximum (CTmax), critical thermal minima (CTmin), heat knockdown time (HKDT) and chill coma recovery time (CCRT). Pupal heat stress significantly influenced performance of B. dorsalis adults resulting in impaired longevity and heat tolerance (CTmax and HKDT) in both sexes with improved and compromised cold tolerance (CTmin and CCRT) in females and males, respectively. These findings highlight the role of juvenile stages in mediating stress responses at adult stages. For B. dorsalis, pupal heat stress largely compromised thermal tolerance implying that the species has limited potential to shift its geographic range in heat prone areas. Significant benefits in cold tolerance in females following heat stress may help in improving survival in the cold in the short-term despite restricted activity to the same traits in males. This study suggests that basal heat tolerance and not short-term compensatory thermal plasticity following heat stress may have aided the recent invasion of B. dorsalis in African landscapes.  相似文献   
107.
In many organisms, the synthesis of heat shock proteins during heat shock is concomitant with the cessation of at least a portion of normal cellular protein synthesis. Heat shocked barley aleurone layers selectively stop the synthesis and secretion of secretory proteins. Exposure to 40°C causes a disruption of endoplasmic reticulum (ER) lamellae, which we have hypothesized leads to the destabilization of otherwise stable mRNA previously associated with ER‐bound polyribosomes. We report here that this was also observed in wounded carrot ( Daucus carota L.) root parenchyma tissue which synthesizes and secretes cell wall proteins when mechanically wounded. Nondenaturing cationic polyacrylamide gel electrophoresis of radiolabeled proteins indicated that heat shock caused the cessation of the synthesis and secretion of extensin, a hydroxyproline‐rich cell wall glycoprotein. Northern blot analyses indicated that the mRNA levels for both extensin and another cell wall protein (p33) were rapidly diminished during heat shock. Under nonheat shock conditions extensin mRNA had a half‐life of greater than 4 h, but this appeared to be reduced to less than 30 min during heat shock. There was also a concomitant dissociation of ER lamellae in wounded, heat shocked carrot root tissue, as observed by transmission electron microscopy. These observations indicate that this response may be universal among plant secretory tissues.  相似文献   
108.
黄瓜幼苗的冷锻炼与低温引起的光抑制李晓萍,陈贻竹,李平,郭俊彦(中国科学院华南植物研究所,广州510650)关键词:低温引起的光抑制,荧光猝灭,冷锻炼,黄瓜幼苗低温使植物利用光能的能力降低从而引起或加剧光抑制(has等1983)。在光抑制中常以叶绿素...  相似文献   
109.
本文对高原冻伤中血液循环障碍作形态计量,旨在探讨血循环障碍在冻伤过程中的变化及高原冻伤发病机理中所起的作用。实验选用Wistar雄性大鼠40只,随机分为平原冻伤组、急性低氧冻伤组和低氧习服冻伤组。习服组动物于低压舱内模拟海拔6000m缺氧每日4h,连续两周。其余动物常规饲养。习服期满次日习服组与低氧组一同进入舱内模拟海拔6000m低氧4h,再行冷冻。冻后继续低氧4h。冻后48h取材。对各组动物冻后48h冻肢皮下血管的病变作图象分析。结果发现,平原组血管淤滞、血栓绝对数及其百分比均为最低,习服组最高,低氧组居中。但低氧组与平原组的血栓/淤滞百分比无明显差别。骨骼肌坏死的面积百分比习服组显著高于低氧组与平原组,而后两组间无差别。血栓/淤滞百分比与骨骼肌坏死面积百分比之间的有高度相关关系。冻融是直接引起血管内皮损伤的原发因素,局部血液循环障碍是造成严重的继发损伤的主要原因。  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号