首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   321篇
  免费   10篇
  国内免费   10篇
  2023年   5篇
  2022年   3篇
  2021年   6篇
  2020年   7篇
  2019年   10篇
  2018年   8篇
  2017年   6篇
  2016年   6篇
  2015年   9篇
  2014年   9篇
  2013年   11篇
  2012年   4篇
  2011年   3篇
  2010年   1篇
  2009年   8篇
  2008年   7篇
  2007年   16篇
  2006年   16篇
  2005年   15篇
  2004年   15篇
  2003年   21篇
  2002年   9篇
  2001年   10篇
  2000年   11篇
  1999年   5篇
  1998年   12篇
  1997年   7篇
  1996年   6篇
  1995年   10篇
  1994年   13篇
  1993年   8篇
  1992年   9篇
  1991年   3篇
  1990年   3篇
  1989年   8篇
  1988年   9篇
  1987年   7篇
  1986年   2篇
  1985年   3篇
  1984年   4篇
  1983年   1篇
  1982年   3篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1978年   3篇
  1977年   1篇
  1976年   1篇
  1974年   2篇
  1973年   1篇
排序方式: 共有341条查询结果,搜索用时 78 毫秒
91.
The structure of many proteins consists of a combination of discrete modules that have been shuffled during evolution. Such modules can frequently be recognized from the analysis of homology. Here we present a systematic analysis of the modular organization of all sequenced proteins. To achieve this we have developed an automatic method to identify protein domains from sequence comparisons. Homologous domains can then be clustered into consistent families. The method was applied to all 21,098 nonfragment protein sequences in SWISS-PROT 21.0, which was automatically reorganized into a comprehensive protein domain database, ProDom. We have constructed multiple sequence alignments for each domain family in ProDom, from which consensus sequences were generated. These nonreduntant domain consensuses are useful for fast homology searches. Domain organization in ProDom is exemplified for proteins of the phosphoenolpyruvate:sugar phosphotransferase system (PEP:PTS) and for bacterial 2-component regulators. We provide 2 examples of previously unrecognized domain arrangements discovered with the help of ProDom.  相似文献   
92.
93.
94.
Summary We report and compare the DNA sequences of 14 silkmoth (Antheraea polyphemus) chorion genes, derived from either cDNA or chromosomal DNA clones. Seven of these genes are members of the A multigene family, and seven are members of the B family. Where available, the previously reported (Jones and Kafatos 1980) intronic and extragenic flanking DNA sequences are also considered. Closely related sequences are compared, revealing the types of spontaneous mutations that were fixed during paralogous evolution. Segmental mutations (i.e. mutations other than substitutions) are nearly always interpretable as small duplications or deletions. related to small direct repeats. Segmental mutations are strongly constrained in the coding regions, although they do occur. Nucleotide substitutions also appear to be under selective constraints: relatively few substitutions leading to amino acid replacements are accepted, silent substitutions leading to some codons (especially purine-terminated ones) are disfavored, and different compositional biases are maintained in different parts of the sequences. Other sequence differences can be interpreted as indicative of neutral drift, including most differences in non-coding regions and most T/C transitions in third-base positions. In the non-coding regions, which are thought to be only loosely constrained by selection, transitions are observed more frequently than might be expected: they account for 52% of all substitutions, and they appear to be favored two to threefold over transversions when allowance is made for the skewed base composition of these regions.  相似文献   
95.
Abstract.  1. Recently, the costs of diapause, i.e. the reduction of fecundity after diapause, have been examined from an evolutionary perspective.
2. The evolution of this trade-off should be clarified by quantitative genetic approaches, as theoretical studies address the evolution of multiple traits. Nevertheless, previous studies on the costs of diapause have been based on phenotypic correlations or experimental manipulations, whereas the genetic background underlying this trade-off remains unclear.
3. In the present study, a half-sib breeding design was used to examine the quantitative genetic relationships between diapause duration and post-diapause fecundity in the Kanzawa spider mite Tetranychus kanzawai Kishida (Acari: Tetranychidae).
4. The heritability of diapause duration, post-diapause total fecundity, and post-diapause early fecundity were 0.37, 0.14, and 0.11 respectively. Genetic correlations between diapause duration and post-diapause total fecundity, and between diapause duration and early fecundity were both significantly negative (–0.70 and –0.90 respectively). These results suggest that the cost of prolonging diapause duration is genetically based, and that these life-history traits respond to natural selection acting on them simultaneously.  相似文献   
96.
Although the somatic ciliature of the Oligotrichida typically comprises only a girdle and ventral kinety, a considerable diversity of ciliary patterns occurs. The four main girdle kinety patterns are identically found in tailed and tail-less species. The contractile tail has a complicated and unique ultrastructure and is potentially useful for the cell's movement and/or stabilization during feeding. Accordingly, I assume that this structure has evolved only once, namely, in the Tontoniidae nov. fam., and that the different girdle kinety patterns developed convergently in the tailed and tail-less taxa. Further distinct features suggest the establishment of the families Cyrtostrombidiidae nov. fam. (with cyrtos-like pharyngeal fibres and lack of ventral membranelles and endoral) and Pelagostrombidiidae nov. fam. (with neoformation organelle). An attempt is made to reconstruct the evolution of the kinety patterns based on morphologic, ontogenetic, and ultrastructural data. Some genera of tail-less Oligotrichida base on differences in the ciliary pattern; Omegastrombidium nov. gen. is erected for a further girdle kinety pattern. Likewise, the tailed genus Tontonia is split, resulting in two new genera, viz., Pseudotontonia nov. gen. and Spirotontonia nov. gen. Furthermore, the genus Spirostrombidium is split due to the different origin of the parallel course of girdle and ventral kinety, and Parallelostrombidium nov. gen. is established. However, the genus Thigmostrombidium is rejected because its enlarged thigmotactic membranelles are interpreted as an adaptation to the benthic lifestyle, which occurred several times within different girdle kinety patterns.  相似文献   
97.
We develop a metric for probability distributions with applications to biological sequence analysis. Our distance metric is obtained by minimizing a functional defined on the class of paths over probability measures on N categories. The underlying mathematical theory is connected to a constrained problem in the calculus of variations. The solution presented is a numerical solution, which approximates the true solution in a set of cases called rich paths where none of the components of the path is zero. The functional to be minimized is motivated by entropy considerations, reflecting the idea that nature might efficiently carry out mutations of genome sequences in such a way that the increase in entropy involved in transformation is as small as possible. We characterize sequences by frequency profiles or probability vectors, in the case of DNA where N is 4 and the components of the probability vector are the frequency of occurrence of each of the bases A, C, G and T. Given two probability vectors a and b, we define a distance function based as the infimum of path integrals of the entropy function H(p) over all admissible paths p(t), 0 t1, with p(t) a probability vector such that p(0)=a and p(1)=b. If the probability paths p(t) are parameterized as y(s) in terms of arc length s and the optimal path is smooth with arc length L, then smooth and rich optimal probability paths may be numerically estimated by a hybrid method of iterating Newtons method on solutions of a two point boundary value problem, with unknown distance L between the abscissas, for the Euler–Lagrange equations resulting from a multiplier rule for the constrained optimization problem together with linear regression to improve the arc length estimate L. Matlab code for these numerical methods is provided which works only for rich optimal probability vectors. These methods motivate a definition of an elementary distance function which is easier and faster to calculate, works on non–rich vectors, does not involve variational theory and does not involve differential equations, but is a better approximation of the minimal entropy path distance than the distance ||ba||2. We compute minimal entropy distance matrices for examples of DNA myostatin genes and amino-acid sequences across several species. Output tree dendograms for our minimal entropy metric are compared with dendograms based on BLAST and BLAST identity scores.Mathematics Subject Classification (2000): 92B05, 92D20  相似文献   
98.
We employed a phylogenomic approach to study the evolution of α subunits of the proteasome gene family from early diverging eukaryotes. BLAST similarity searches of the Giardia lamblia genome identified all seven α proteasome genes characteristic of eukaryotes from the crown group. In addition, a PCR strategy for the amplification of multiple α subunit sequences generated single α proteasome products for representatives of the Kinetoplastida (Leishmania major), the Parabasalia (Trichomonas vaginalis), and the Microsporidia (Vairimorpha sp., Nosema sp., Endoreticulata sp., and Spraguea lophii). The kinetoplastid Trypanosoma cruzi and the eukaryote crown group Acanthamoeba castellanii yielded two distinct α proteasome genes each. The presence of seven distinct α proteasome genes in G. lamblia, one of the earliest-diverging eukaryotes, indicates that the α proteasome gene family evolved rapidly from a minimum of one gene in Archaea to seven or more in Eukarya. Results from the phylogenomic analysis are consistent with the idea that the Diplomonida (as represented by G. lamblia), the Kinetoplastida, the Parabasalia, and the Microsporidia diverged after the duplication events that originated the α proteasome gene family. A model for the early origin and evolution of the proteasome gene family is presented. Received: 14 February 2000 / Accepted: 14 August 2000  相似文献   
99.
Families of papain- and legumain-like cysteine proteinases (CPR) were found in Vicia seeds. cDNAs and antibodies were used to follow organ specificity and the developmental course of CPR-specific mRNAs and polypeptides. Four papain-like cysteine proteinases (CPR1, CPR2, proteinase A and CPR4) from vetch seeds (Vicia sativa L.) were analysed. CPR2 and its mRNA were already found in dry embryonic axes. CPR1 was only detected there during early germination. Both CPR1 and CPR2 strongly increased later during germination. In cotyledons, both CPR1 and CPR2 were only observed one to two days later than in the axis. Proteinase A was not found in axes. In cotyledons it could only be detected several days after seeds had germinated. CPR4 mRNA and polypeptide were already present in embryonic axes and cotyledons during seed maturation and decreased in both organs during germination. Purified CPR1, CPR2 and proteinase A exhibited partially different patterns of globulin degradation products in vitro. Although the cDNA-deduced amino acid sequence of the precursor of proteinase A has an N-terminal signal peptide, the enzyme was not found in vacuoles whereas the other papain-like CPRs showed vacuolar localization. Four different legumain-like cysteine proteinases (VsPB2, proteinase B, VnPB1 and VnPB2) of Vicia species were analysed. Proteinase B and VnPB1 mRNAs were detected in cotyledons and seedling organs after seeds had germinated. Proteinase B degraded globulins isolated from mature vetch seeds in vitro. VsPB2 and proteinase B are localized to protein bodies of maturing seeds and seedlings, respectively, of V. sativa. Like VsPB2 from V. sativa, also VnPB2 of V. narbonensis corresponds to vacuolar processing enzymes (VPE). Based on these results different functions in molecular maturation and mobilization of storage proteins could be attributed to the various members of the CPR families.  相似文献   
100.
Duplication of genomic regions is an important biological process associated with the appearance of gene families, the origin of alternative splicing, and the etiopathogenesis of genetic diseases. Different mechanisms for the genesis of duplications have been suggested, based mainly on structural analyses. However, experimental confirmation of those mechanisms is scarce, mostly because of a lack of information about the circumstances that triggered the rearrangements. Here, I characterize a duplication of about 300 kbp (kilobase pairs) that occurred in the course of a gene targeting experiment. Considering the structure of the locus and the triggering event, I suggest a likely mechanism for the genesis of this duplication which involves anomalous processing of contiguous Okazaki fragments during lagging strand replication. Most importantly, I provide experimental evidence to substantiate that the proposed mechanism can indeed lead to duplication of genomic segments. The model presented represents a novel mechanistic pathway that can explain a variety of rearrangements, including genomic tandem duplications and deletions.[Reviewing Editor: Dr. Jonathon A. Eisen]  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号