首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18756篇
  免费   1973篇
  国内免费   1451篇
  2024年   64篇
  2023年   397篇
  2022年   387篇
  2021年   616篇
  2020年   765篇
  2019年   1045篇
  2018年   873篇
  2017年   898篇
  2016年   817篇
  2015年   777篇
  2014年   935篇
  2013年   1665篇
  2012年   682篇
  2011年   820篇
  2010年   789篇
  2009年   1006篇
  2008年   1140篇
  2007年   1029篇
  2006年   984篇
  2005年   793篇
  2004年   743篇
  2003年   637篇
  2002年   580篇
  2001年   448篇
  2000年   446篇
  1999年   392篇
  1998年   366篇
  1997年   291篇
  1996年   239篇
  1995年   233篇
  1994年   176篇
  1993年   160篇
  1992年   153篇
  1991年   123篇
  1990年   101篇
  1989年   83篇
  1988年   70篇
  1987年   80篇
  1986年   64篇
  1985年   68篇
  1984年   51篇
  1983年   20篇
  1982年   43篇
  1981年   38篇
  1980年   24篇
  1979年   15篇
  1978年   16篇
  1977年   13篇
  1976年   9篇
  1972年   4篇
排序方式: 共有10000条查询结果,搜索用时 62 毫秒
21.
Abstract

The conformations of the chains constituting the hydrophilic component of alkyl monolayers and bilayers are investigated by performing molecular dynamics atomistic simulations on these systems at different temperatures. Several monitoring techniques are used to reveal the chain conformations, including atom pair radial distribution functions, evolutions of the torsional angles over thousands of timesteps, frequency distributions of the torsionl angles and ‘snapshot’ plots of the atomic configurations. These methods consistently testify to the stability of the trans (fully extended) character of the strain-free alkyl chains up to room temperature. The chains retain much of this conformation even when the layers are compressed by the application of pressure, to which the chains respond by ‘folding’ at the ends attaching them to the substrate planes while maintaining directions which are mainly normal to these planes. A non-zero gap between the layers is also maintained. A pressure of about 50 kbar abruptly causes all motion in the chains to cease, resulting in a highly ordered lattice structure.  相似文献   
22.
The boreal forest is one of the North America’s most important breeding areas for ducks, but information about the nesting ecology of ducks in the region is limited. We collected microhabitat data related to vegetation structure and composition at 157 duck nests and paired random locations in Alberta’s boreal forest region from 2016 to 2018. We identified fine‐scale vegetation features selected by ducks for all nests, between nesting guilds, and among five species using conditional logistic regression. Ducks in the boreal forest selected nest sites with greater overhead and graminoid cover, but less forb cover than random sites. Characteristics of the nest sites of upland‐ and overwater‐nesting guilds differed, with species nesting in upland habitat selecting nests that provided greater shrub cover and less lateral concealment and species nesting over water selecting nests with less shrub cover. We examined the characteristics of nest sites of American Wigeon (Mareca americana), Blue‐winged Teal (Spatula discors), Green‐winged Teal (Anas crecca), Mallards (Anas platyrhynchos), and Ring‐necked Ducks (Aythya collaris), and found differences among species that may facilitate species coexistence at a regional scale. Our results suggest that females of species nesting in upland habitat selected nest sites that optimized concealment from aerial predators while also allowing detection of and escape from terrestrial predators. Consequently, alteration in the composition and heterogeneity of vegetation and predator communities caused by climate change and industrial development in the boreal forest of Canada may affect the nest‐site selection strategies of boreal ducks.  相似文献   
23.
24.
25.
26.
Fluctuations in marine populations often relate to the supply of recruits by oceanic currents. Variation in these currents is typically driven by large‐scale changes in climate, in particular ENSO (El Nino Southern Oscillation). The dependence on large‐scale climatic changes may, however, be modified by early life history traits of marine taxa. Based on eight years of annual surveys, along 150 km of coastline, we examined how ENSO influenced abundance of juvenile fish, coral spat, and canopy‐forming macroalgae. We then investigated what traits make populations of some fish families more reliant on the ENSO relationship than others. Abundance of juvenile fish and coral recruits was generally positively correlated with the Southern Oscillation Index (SOI), higher densities recorded during La Niña years, when the ENSO‐influenced Leeuwin Current is stronger and sea surface temperature higher. The relationship is typically positive and stronger among fish families with shorter pelagic larval durations and stronger swimming abilities. The relationship is also stronger at sites on the coral back reef, although the strongest of all relationships were among the lethrinids (r = .9), siganids (r = .9), and mullids (r = .8), which recruit to macroalgal meadows in the lagoon. ENSO effects on habitat seem to moderate SOI–juvenile abundance relationship. Macroalgal canopies are higher during La Niña years, providing more favorable habitat for juvenile fish and strengthening the SOI effect on juvenile abundance. Conversely, loss of coral following a La Niña‐related heat wave may have compromised postsettlement survival of coral dependent species, weakening the influence of SOI on their abundance. This assessment of ENSO effects on tropical fish and habitat‐forming biota and how it is mediated by functional ecology improves our ability to predict and manage changes in the replenishment of marine populations.  相似文献   
27.
There has been much recent research interest in the existence of a major axis of life‐history variation along a fast–slow continuum within almost all major taxonomic groups. Eco‐evolutionary models of density‐dependent selection provide a general explanation for such observations of interspecific variation in the "pace of life." One issue, however, is that some large‐bodied long‐lived “slow” species (e.g., trees and large fish) often show an explosive “fast” type of reproduction with many small offspring, and species with “fast” adult life stages can have comparatively “slow” offspring life stages (e.g., mayflies). We attempt to explain such life‐history evolution using the same eco‐evolutionary modeling approach but with two life stages, separating adult reproductive strategies from offspring survival strategies. When the population dynamics in the two life stages are closely linked and affect each other, density‐dependent selection occurs in parallel on both reproduction and survival, producing the usual one‐dimensional fast–slow continuum (e.g., houseflies to blue whales). However, strong density dependence at either the adult reproduction or offspring survival life stage creates quasi‐independent population dynamics, allowing fast‐type reproduction alongside slow‐type survival (e.g., trees and large fish), or the perhaps rarer slow‐type reproduction alongside fast‐type survival (e.g., mayflies—short‐lived adults producing few long‐lived offspring). Therefore, most types of species life histories in nature can potentially be explained via the eco‐evolutionary consequences of density‐dependent selection given the possible separation of demographic effects at different life stages.  相似文献   
28.
29.
1. Ship‐induced waves can affect the physical characteristics of lake and river shorelines, and laboratory studies have shown effects on littoral invertebrates. Here, we explored whether these effects could be observed under field conditions along a natural lake shore affected by wave sequences (trains) produced by boats. 2. Individuals of five invertebrate species (Bithynia tentaculata, Calopteryx splendens, Dikerogammarus villosus, Gammarus roeselii, Laccophilus hyalinus) were exposed to waves with increasing shear stress in five habitats differing in structural complexity. 3. Detachment of invertebrates increased with increasing shear stress and was best modelled using sigmoid response curves. Habitat structural complexity mitigated the effects of shear stress, and detachment rate was influenced more by habitat type than by species. A threshold (90% of the individual invertebrates unaffected) stress level of 0.64 N m?2 was found for a structurally complex reed habitat, compared to 0.37 N m?2 for a simple sand habitat. 4. Shear stress associated with wave trains created by recreational boating at a distance of 35 m from the shore and at a speed of 11 km h?1 resulted in 45% detachment of littoral invertebrates. Decreasing the boat‐to‐shore distance to 20 m increased wave shear stress by 30% and invertebrate detachments up to 75%. 5. Disturbance of littoral habitats and invertebrate assemblages are widespread in inland waters used for recreational and/or commercial navigation. Our findings show that the integrity of littoral zones of navigable surface waters could be much improved by implementing management measures such as physically protecting complex habitats with dense reed belts and tree roots, and reducing boat speeds and increasing their minimum shoreline distance.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号