首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   430篇
  免费   32篇
  国内免费   15篇
  477篇
  2024年   2篇
  2023年   8篇
  2022年   11篇
  2021年   20篇
  2020年   16篇
  2019年   15篇
  2018年   13篇
  2017年   12篇
  2016年   8篇
  2015年   20篇
  2014年   23篇
  2013年   20篇
  2012年   9篇
  2011年   20篇
  2010年   21篇
  2009年   22篇
  2008年   32篇
  2007年   34篇
  2006年   20篇
  2005年   19篇
  2004年   25篇
  2003年   21篇
  2002年   21篇
  2001年   6篇
  2000年   10篇
  1999年   6篇
  1998年   7篇
  1997年   6篇
  1996年   8篇
  1995年   2篇
  1994年   6篇
  1993年   5篇
  1992年   5篇
  1988年   2篇
  1985年   1篇
  1979年   1篇
排序方式: 共有477条查询结果,搜索用时 0 毫秒
31.
The enteric nervous system (ENS) in vertebrate embryos is formed by neural crest-derived cells. During development, these cells undergo extensive migration from the vagal and sacral regions to colonize the entire gut, where they differentiate into neurons and glial cells. Guidance molecules like netrins, semaphorins, slits, and ephrins are known to be involved in neuronal migration and axon guidance. In the CNS, the repulsive guidance molecule (RGMa) has been implicated in neuronal differentiation, migration, and apoptosis. Recently, we described the expression of the subtypes RGMa and RGMb and their receptor neogenin during murine gut development. In the present study, we investigated the influence of RGMa on neurosphere cultures derived from fetal ENS. In functional in vitro assays, RGMa strongly inhibited neurite outgrowth of differentiating progenitors via the receptor neogenin. The repulsive effect of RGMa on processes of differentiated enteric neural progenitors could be demonstrated by collapse assay. The influence of the RGM receptor on ENS was also analyzed in neogenin knockout mice. In the adult large intestine of mutants we observed disturbed ganglia formation in the myenteric plexus. Our data indicate that RGMa may be involved in differentiation processes of enteric neurons in the murine gut.  相似文献   
32.
We present here a two-step strategy for micropatterning proteins on a substrate to control neurite growth in culture. First, conventional microcontact printing is used to prepare a micropattern of protein A, which binds the Fc fragment of immunoglobulins. Then, a chimeric protein, consisting of the extracellular domain of a guidance protein recombinantly linked to the Fc fragment of IgG (prepared using conventional molecular techniques), is applied from solution. The chimeric protein binds to the patterned protein A, taking on its geometric pattern. Using this method, we have micropatterned the extracellular domain of the cell adhesion molecule, L1 (as an L1-Fc chimera) and demonstrated that it retains its ability to selectively guide axonal growth. L1-Fc micropatterned on a background of poly-l-lysine resulted in selective growth of the axons on the micropattern, whereas the somata and dendrites were unresponsive. Substrates bearing simultaneous micropatterns of L1-Fc and poly-l-lysine on a background of untreated glass were also created. Using this approach, cell body position was controlled by manipulating the dimensions of the poly-l-lysine pattern, and the dendrites were constrained to the poly-l-lysine pattern, while the axons grew preferentially on L1-Fc. The two-step microcontact printing method allows preparation of substrates that contain guidance proteins in geometric patterns with resolution of 1 m. This method should be broadly applicable to many classes of proteins.  相似文献   
33.
彭雄波  孙蒙祥 《植物学报》2016,51(2):145-147
阐明植物雄配子体与雌配子体互作的分子机理一直是植物有性生殖研究的前沿和热点。但限于研究难度较大, 很多重要科学问题仍有待回答。关于花粉管如何感知雌配子体信号从而定向生长进入胚囊以投送精细胞就是悬疑多年的问题之一。最近, 中国科学家在解析雄配子体感知雌配子体引导信号的分子机制方面取得了突破性进展。  相似文献   
34.
During development, sensory thalamocortical (TC) axons grow into the neocortex and terminate primarily in layer 4. To study the molecular mechanism that underlies lamina-specific TC axon termination, we investigated the responsiveness of TC axons to ephrin-A5, semaphorin-7A (Sema7A) and kit ligand (KL), which are expressed in the upper layers of the developing cortex. Dissociated cells of the dorsal thalamus from embryonic rat brain were cultured on dishes that were coated with preclustered Fc-tagged extracellular domains of these molecules. Each protein was found to promote TC axon growth in a dose-dependent fashion of a bell-shaped curve. Any combination of the three proteins showed a cooperative effect in lower concentrations but not in higher concentrations, suggesting that their growth-promoting activities act in a common pathway. The effect of spatial distributions of these proteins was further tested on a filter membrane, in which these proteins were printed at a size that recapitulates the scale of laminar thickness in vivo, using a novel protein-printing technique, Simple-To-mAke Micropore Protein-Printing (STAMP2) method. The results demonstrated that TC axons grew massively on the laminin-coated region but were prevented from invading the adjacent ephrin-A5-printed region, suggesting that TC axons detect relative differences in the growth effect between these regions. Moreover, the inhibitory action of ephrin-A5 was enhanced by copresence with KL and Sema7A. Together, these results suggest that the lamina-specific TC axon targeting mechanism involves growth-inhibitory activity by multiple molecules in the upper layers and detection in the molecular environments between the upper and deep layers.  相似文献   
35.
Axonal receptors for class 3 semaphorins (Sema3s) are heterocomplexes of neuropilins (Nrps) and Plexin-As signalling coreceptors. In the developing cerebral cortex, the Ig superfamily cell adhesion molecule L1 associates with Nrp1. Intriguingly, the genetic removal of L1 blocks axon responses of cortical neurons to Sema3A in vitro despite the expression of Plexin-As in the cortex, suggesting either that L1 substitutes for Plexin-As or that L1 and Plexin-A are both required and mediate distinct roles. We report that association of Nrp1 with L1 but not Plexin-As mediates the recruitment and activation of a Sema3A-induced focal adhesion kinase-mitogen-activated protein kinase cascade. This signalling downstream of L1 is needed for the disassembly of adherent points formed in growth cones and subsequently their collapse response to Sema3A. Plexin-As and L1 are coexpressed and present in common complexes in cortical neurons and both dominant-negative forms of Plexin-A and L1 impair their response to Sema3A. Consistently, Nrp1-expressing cortical projections are defective in mice lacking Plexin-A3, Plexin-A4 or L1. This reveals that specific signalling activities downstream of L1 and Plexin-As cooperate for mediating the axon guidance effects of Sema3A.  相似文献   
36.
Fgf signaling plays crucial roles in morphogenesis. Fgf19 is required for zebrafish forebrain development. Here, we examined the roles of Fgf19 in the formation of the lens and retina in zebrafish. Knockdown of Fgf19 caused a size reduction of the lens and the retina, failure of closure of the choroids fissure, and a progressive expansion of the retinal tissue to the midline of the forebrain. Fgf19 expressed in the nasal retina and lens was involved in cell survival but not cell proliferation during embryonic lens and retina development. Fgf19 was essential for the differentiation of lens fiber cells in the lens but not for the neuronal differentiation and lamination in the retina. Loss of nasal fate in the retina caused by the knockdown of Fgf19, expansion of nasal fate in the retina caused by the overexpression of Fgf19 and eye transplantation indicated that Fgf19 in the retina was crucial for the nasal-temporal patterning of the retina that is critical for the guidance of retinal ganglion cell axons. Knockdown of Fgf19 also caused incorrect axon pathfinding. The present findings indicate that Fgf19 positively regulates the patterning and growth of the retina, and the differentiation and growth of the lens in zebrafish.  相似文献   
37.
Neuronal axons are guided by attractive and repulsive cues in their local environment. Since the identification of the repulsive guidance molecule (RGM) a (RGMa) as an axon repellent in the visual system, diverse functions, as part of the developing and adult central nervous system (CNS), have been ascribed to it. The binding of RGMa to its receptor neogenin has been shown to induce RhoA activation, leading to inhibitory/repulsive behavior and the collapse of the neuronal growth cone. In this paper, we provide evidence to suggest the involvement of RGMb, another member of the RGM family, in the rat CNS. RGMb inhibits neurite outgrowth in postnatal cerebellar granule neurons (CGNs) in vitro. RGMb is expressed by oligodendrocytes and neurons in the adult rat CNS, and the expression of this molecule is upregulated around the site of spinal cord injury. RGMb is present in myelin isolated from an adult rat brain. RGMb and neogenin are coexpressed in CGNs and entorhinal cortex neurons. These findings suggest that RGMb is a myelin-derived inhibitor of axon growth in the CNS. Inhibition of RGMb may provide an alternative approach for the treatment of spinal injuries.  相似文献   
38.
Axon fasciculation is one of the processes controlling topographic innervation during embryonic development. While axon guidance steers extending axons in the accurate direction, axon fasciculation allows sets of co-extending axons to grow in tight bundles. The Eph:ephrin family has been involved both in axon guidance and fasciculation, yet it remains unclear how these two distinct types of responses are elicited. Herein we have characterized the role of ephrin-B1, a member of the ephrinB family in sensory and motor innervation of the limb. We show that ephrin-B1 is expressed in sensory axons and in the limb bud mesenchyme while EphB2 is expressed in motor and sensory axons. Loss of ephrin-B1 had no impact on the accurate dorso-ventral innervation of the limb by motor axons, yet EfnB1 mutants exhibited decreased fasciculation of peripheral motor and sensory nerves. Using tissue-specific excision of EfnB1 and in vitro experiments, we demonstrate that ephrin-B1 controls fasciculation of axons via a surround repulsion mechanism involving growth cone collapse of EphB2-expressing axons. Altogether, our results highlight the complex role of Eph:ephrin signaling in the development of the sensory-motor circuit innervating the limb.  相似文献   
39.
Neurons-on-a-Chip technology has been developed to provide diverse in vitro neuro-tools to study neuritogenesis, synaptogensis, axon guidance, and network dynamics. The two core enabling technologies are soft-lithography and microelectrode array technology. Soft lithography technology made it possible to fabricate microstamps and microfluidic channel devices with a simple replica molding method in a biological laboratory and innovatively reduced the turn-around time from assay design to chip fabrication, facilitating various experimental designs. To control nerve cell behaviors at the single cell level via chemical cues, surface biofunctionalization methods and micropatterning techniques were developed. Microelectrode chip technology, which provides a functional readout by measuring the electrophysiological signals from individual neurons, has become a popular platform to investigate neural information processing in networks. Due to these key advances, it is possible to study the relationship between the network structure and functions, and they have opened a new era of neurobiology and will become standard tools in the near future.  相似文献   
40.
Interface devices such as integrated planar patch‐clamp chips are being developed to study the electrophysiological activity of neuronal networks grown in vitro. The utility of such devices will be dependent upon the ability to align neurons with interface features on the chip by controlling neuronal placement and by guiding cell connectivity. In this paper, we present a strategy to accomplish this goal. Patterned chemical modification of SiN surfaces with poly‐d‐lysine transferred from PDMS stamps was used to promote adhesion and guidance of cryo‐preserved primary rat cortical neurons. We demonstrate that these neurons can be positioned and grown over microhole features which will ultimately serve as patch‐clamp interfaces on the chip. Biotechnol. Bioeng. 2010; 105: 368–373. © 2009 Wiley Periodicals, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号