首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1107篇
  免费   17篇
  国内免费   5篇
  2022年   9篇
  2021年   8篇
  2020年   10篇
  2019年   13篇
  2018年   17篇
  2017年   7篇
  2016年   11篇
  2015年   19篇
  2014年   46篇
  2013年   87篇
  2012年   32篇
  2011年   46篇
  2010年   35篇
  2009年   44篇
  2008年   52篇
  2007年   50篇
  2006年   36篇
  2005年   45篇
  2004年   29篇
  2003年   35篇
  2002年   24篇
  2001年   12篇
  2000年   24篇
  1999年   18篇
  1998年   23篇
  1997年   21篇
  1996年   10篇
  1995年   15篇
  1994年   19篇
  1993年   16篇
  1992年   13篇
  1991年   15篇
  1990年   18篇
  1989年   19篇
  1988年   17篇
  1987年   13篇
  1986年   18篇
  1985年   35篇
  1984年   31篇
  1983年   24篇
  1982年   28篇
  1981年   16篇
  1980年   16篇
  1979年   11篇
  1978年   9篇
  1977年   10篇
  1976年   6篇
  1975年   5篇
  1974年   4篇
  1973年   5篇
排序方式: 共有1129条查询结果,搜索用时 15 毫秒
991.
992.
Recently we reported on a plasma membrane tobacco protein (designated NtCBP4) that binds calmodulin. When overexpressed in transgenic plants, NtCBP4 confers Pb2+ hypersensitivity associated with enhanced accumulation of this toxic metal. To further investigate possible modulation of Pb2+ tolerance in plants, we prepared transgenic plants that express a truncated version of this protein (designated NtCBP4DeltaC) from which its C-terminal, with the calmodulin-binding domain and part of the putative cyclic nucleotide-binding domain, was removed. In contrast to the phenotype of transgenic plants expressing the full-length gene, transgenic plants expressing the truncated gene showed improved tolerance to Pb2+, in addition to attenuated accumulation of this metal. Furthermore, disruption by T-DNA insertion mutagenesis of the Arabidopsis CNGC1 gene, which encodes a homologous protein, also conferred Pb2+ tolerance. We suggest that NtCBP4 and AtCNGC1 are components of a transport pathway responsible for Pb2+ entry into plant cells.  相似文献   
993.
Replacement of lost or dysfunctional tissues by stem cells has recently raised many investigations on therapeutic applications. Purinergic signaling has been shown to regulate proliferation, differentiation, cell death, and successful engraftment of stem cells originated from diverse origins. Adenosine triphosphate release occurs in a controlled way by exocytosis, transporters, and lysosomes or in large amounts from damaged cells, which is then subsequently degraded into adenosine. Paracrine and autocrine mechanisms induced by immune responses present critical factors for the success of stem cell therapy. While P1 receptors generally exert beneficial effects including anti-inflammatory activity, P2 receptor-mediated actions depend on the subtype of stimulated receptors and localization of tissue repair. Pro-inflammatory actions and excitatory tissue damages mainly result from P2X7 receptor activation, while other purinergic receptor subtypes participate in proliferation and differentiation, thereby providing adequate niches for stem cell engraftment and novel mechanisms for cell therapy and endogenous tissue repair. Therapeutic applications based on regulation of purinergic signaling are foreseen for kidney and heart muscle regeneration, Clara-like cell replacement for pulmonary and bronchial epithelial cells as well as for induction of neurogenesis in case of neurodegenerative diseases.  相似文献   
994.
Dendritic cells (DCs) play a pivotal role in polarising Th lymphocyte subsets but it is unclear what molecular events occur when DCs generate Th2-type responses. Here, we analysed plasma membrane-enriched fractions from immature, pro-Th1 and pro-Th2 DCs and used a combination of iTRAQ labelling and LC-MS/MS to quantify changes in the proteomes. Analysis was performed on triplicate biological samples and changes verified by flow cytometry. MHC class II molecules and CD29 were up-regulated in pro-Th1 DCs whilst CD18 and CD44 were up-regulated in pro-Th2 DCs. One of the most down-regulated molecules in pro-Th1 DCs was YM-1 whilst the greatest decrease in pro-Th2 DCs was NAP-22. Other molecules up-regulated in pro-Th2 DC compared to pro-Th1 DCs included some potentially involved in protein folding during antigen processing (clathrin and Rab-7), whilst other non-membrane proteins such as enzymes/transporters related to cell metabolism (malate dehydrogenase, pyruvate kinase, and ATPase Na+/K+) were also recorded. This suggests that pro-Th2 DCs are more metabolically active while pro-Th1 DCs have a mature ‘end state’. Overall, although several molecules were preferentially expressed on pro-Th2 DCs, our proteomics data support the view of a ‘limited maturation’ of pro-Th2 DCs compared to pro-Th1 DCs.  相似文献   
995.
996.

Introduction

Cervical cancer is one of the most common cancers diagnosed in women worldwide. Mammalian cells are constantly exposed to a wide variety of genotoxic agents from both endogenous and exogenous sources. The RAD51 protein is required for meiotic and mitotic recombination and plays a central role in homology-dependent recombinational repair of double-strand breaks (DSBs). Given the functional relevance of the DNA repair system on carcinogenesis, potential associations between genetic polymorphisms of DNA repair genes, cancer risk and response to therapy have been intensively evaluated. This is the first study evaluating the role of the RAD51 G172T genetic variants in cancer prognosis and clinical outcome of cervical cancer patients.

Material and methods

We analyzed RAD51 G172T polymorphism genotypes in cervical cancer patients who underwent a platinum-based chemotherapy in combination with radiotherapy. Genotyping was performed by Taqman™ Allelic Discrimination methodology.

Results and discussion

Concerning the overall survival rates found using Kaplan–Meier method and Log Rank Test, we observed that the mean survival rates were statistically different according to the patients RAD51 genotypes. The group of patients carrying the T allele present a higher mean survival rate than the other patients (102.3 months vs. 86.4 months, P = 0.020). Using the Cox regression analysis, we found an increased overall survival time for T-carrier patients, when compared with GG genotype, with tumor stage, age and presence of lymph nodes as covariates [hazard ratio (HR), 0.373; 95% CI, 0.181–0.770; P = 0.008]. Among patients (n = 193), RAD51 genotype frequency distributions were not under the influence of clinicopathologic characteristics, namely, treatment response (P = 0.508), recurrence (P = 0.150) and tumor stage (P = 0.250).

Conclusions

This is the first study evaluating the role of the RAD51 G172T genetic variants in cancer prognosis and clinical outcome of cervical cancer patients. Our results indicate an influence of the RAD51 genetic variants in overall survival of cervical cancer. Thereby, RAD51 G172T genotypes may provide additional prognostic information in cervical cancer patients who underwent cisplatin-based chemotherapy in combination with radiotherapy.  相似文献   
997.
998.
Pomegranate (Punica granatum L.) is one of the oldest known edible fruits and more and more it arouse interest of scientific community given its numerous biological activities. However, information about its genetic resources and characterization using reliable molecular markers are still scarce. In the present study, we report the development of 4 new polymorphic SSR markers. They have been used in addition to 11 SSRs previously published to investigate molecular diversity of 33 P. granatum ecotypes. Based on the multi-locus profiles, twenty-two distinctive genotypes were identified. Globally, quite low genetic diversity has been revealed, as measured by allele richness (2.83 per locus) and heterozygosity (He = 0.245; Ho = 0.243), reflecting the narrow genetic background of the plant material. Four synonymous groups could be detected involving 15 accessions. Results of ordination and cluster analysis suggested that almost all the Tunisian cultivars share similar genetic background, and are likely derived from a small number of introductions in ancient times. Results issued from this study provide essential information to project a pomegranate core-collection without plant material duplication and for sustainable management of pomegranate landraces at national and international level. Furthermore, these SSR markers are powerful tool for marker assisted selection (MAS) program and for QTL studies.  相似文献   
999.
1000.
Mutations in the glucose-6-phosphatase (G6Pase) gene are responsible for glycogen storage disease type Ia (GSD Ia). By genotype analysis of the affected pedigree, we identified a novel type mutation in a Chinese patient with GSD Ia. Mutation analysis was performed for the coding region of G6Pase gene using DNA sequencing and TaqMan gene expression assay was used to further confirm the novel mutation. The proband was compound heterozygous for c.311A > T/c.648G > T. Our report expands the spectrum of G6Pase gene mutation in China.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号