首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1107篇
  免费   17篇
  国内免费   5篇
  2022年   9篇
  2021年   8篇
  2020年   10篇
  2019年   13篇
  2018年   17篇
  2017年   7篇
  2016年   11篇
  2015年   19篇
  2014年   46篇
  2013年   87篇
  2012年   32篇
  2011年   46篇
  2010年   35篇
  2009年   44篇
  2008年   52篇
  2007年   50篇
  2006年   36篇
  2005年   45篇
  2004年   29篇
  2003年   35篇
  2002年   24篇
  2001年   12篇
  2000年   24篇
  1999年   18篇
  1998年   23篇
  1997年   21篇
  1996年   10篇
  1995年   15篇
  1994年   19篇
  1993年   16篇
  1992年   13篇
  1991年   15篇
  1990年   18篇
  1989年   19篇
  1988年   17篇
  1987年   13篇
  1986年   18篇
  1985年   35篇
  1984年   31篇
  1983年   24篇
  1982年   28篇
  1981年   16篇
  1980年   16篇
  1979年   11篇
  1978年   9篇
  1977年   10篇
  1976年   6篇
  1975年   5篇
  1974年   4篇
  1973年   5篇
排序方式: 共有1129条查询结果,搜索用时 31 毫秒
101.
The Ras homology (Rho) guanine nucleotide exchange factor p115-RhoGEF couples the alpha(13) heterotrimeric guanine nucleotide binding protein (G protein) subunit to Rho GTPase. Alpha(13) binds to a regulator of G protein signaling (RGS) domain in p115-RhoGEF, but the mechanism of alpha(13) activation of p115-RhoGEF is poorly understood. In this report, we demonstrate in cell-based assays that the acidic-rich N-terminus, adjacent to the RGS domain, is required for binding to activated alpha(13), and refine the importance of this region by showing that mutation of glutamic acids 27 and 29 in full-length p115-RhoGEF is sufficient to prevent interaction with activated alpha(13). However, alpha(13)-interacting deficient N-terminal mutants of p115-RhoGEF retain alpha(13)-dependent plasma membrane recruitment. Overall, these findings demonstrate a critical role for the N-terminal extension of p115-RhoGEF in mediating binding to alpha(13) and dissociate two activities of p115-RhoGEF: binding to activated alpha(13) and translocation to the PM in response to activated alpha(13).  相似文献   
102.
Ischemic preconditioning (IPC) is a phenomenon of protection in various tissues from normothermic ischemic injury by previous exposure to short cycles of ischemia-reperfusion. The ability of IPC to protect hepatocytes from a model of hypothermic transplant preservation injury was tested in this study. Rat hepatocytes were subjected to 30min of warm ischemia (37 degrees C) followed by 24 or 48h of hypothermic (4 degrees C) storage in UW solution and subsequent re-oxygenation at normothermia for 1h. Studies were performed with untreated control cells and cells treated with IPC (10min anoxia followed by 10min re-oxygenation, 1 cycle). Hepatocytes exposed to IPC prior to warm ischemia released significantly less LDH and had higher ATP concentrations, relative to untreated ischemic hepatocytes. IPC significantly reduced LDH release after 24h of cold storage before reperfusion and after 48h of cold storage and after 60min of warm re-oxygenation, relative to the corresponding untreated hepatocytes. ATP levels were also significantly higher when IPC was used prior to the warm and cold ischemia-re-oxygenation protocols. In parallel studies, IPC increased new protein synthesis and lactate after cold storage and reperfusion compared to untreated cells but no differences in the patterns of protein banding were detected on electrophoresis between the groups. In conclusion, IPC significantly improves hepatocyte viability and energy metabolism in a model of hypothermic preservation injury preceded by normothermic ischemia. These protective effects on viability may be related to enhanced protein and ATP synthesis at reperfusion.  相似文献   
103.
Stimulation of ciliary cells through muscarinic receptors leads to a strong biphasic enhancement of ciliary beat frequency (CBF). The main goal of this work is to delineate the chain of molecular events that lead to the enhancement of CBF induced by acetylcholine (ACh). Here we show that the Ca(2+), cGMP, and cAMP signaling pathways are intimately interconnected in the process of cholinergic ciliary stimulation. ACh induces profound time-dependent increase in cGMP and cAMP concentrations mediated by the calcium-calmodulin complex. The initial strong CBF enhancement in response to ACh is mainly governed by PKG and elevated calcium. The second phase of CBF enhancement induced by ACh, a stable moderately elevated CBF, is mainly regulated by PKA in a Ca(2+)-independent manner. Inhibition of either guanylate cyclase or of PKG partially attenuates the response to ACh of [Ca(2+)](i), but completely abolishes the response of CBF. Inhibition of PKA moderately attenuates and significantly shortens the responses to ACh of both [Ca(2+)](i) and CBF. In addition, PKA facilitates the elevation in [Ca(2+)](i) and cGMP levels induced by ACh, whereas an unimpeded PKG activity is essential for CBF enhancement mediated by either Ca(2+) or PKA.  相似文献   
104.
1. Guanosine-5-monophosphate (GMP) was evaluated as a neuroprotective agent against the damage observed in rat hippocampal slices submitted to an in vitro model of ischemia with or without the presence of the ionotropic glutamate receptor agonist, Kainic acid (KA).2. Cellular injury was evaluated by MTT reduction, lactate dehydrogenase (LDH) release assay, and measurement of intracellular ATP levels.3. In slices submitted to ischemic conditions, 1 mM GMP partially prevented the decrease in cell viability induced by glucose and oxygen deprivation and the addition of KA.4. KA or N-methyl-D-aspartate (NMDA) receptor antagonists, -D-glutamylamino-methylsulfonate (GAMS) or (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate (MK-801, 20 M) also prevented toxicity in hippocampal slices under ischemic conditions, respectively.5. The association of GMP with GAMS or MK-801 did not induce additional protection than that observed with GMP or that classical glutamate receptor antagonists alone.6. GMP, probably by interacting with ionotropic glutamate receptors, attenuated the damage caused by glucose and oxygen deprivation in hippocampal slices. This neuroprotective action of GMP in this model of excitotoxicity is of outstanding interest in the search for effective therapies against ischemic injury.  相似文献   
105.
Hypoxanthine-guanine phosphoribosyltransferase (HGPRT, EC 2.4.2.8) from a newly characterized thermophile Thermoanaerobacter tengcongensis was expressed in Escherichia coli and purified. Analytical gel filtration suggested that the enzyme exist as a homotetramer in solution. The optimal pH for the forward reaction was found to be 8.0 and the optimal temperature 70 degrees C. The steady-state kinetic characteristics suggest that hypoxanthine is the most effective substrate. This enzyme showed a half-life of 75min at 50 degrees C and no apparent loss of activity after 3 months at 4 degrees C.  相似文献   
106.
1. The effect of adenosine analogues and of nucleotides, alone or in combination, on intracellular calcium, accumulation of inositol (1,4,5) trisphosphate (InsP3), and on activation of protein kinase C (PKC) was studied in DDT1 MF2 cells derived from a Syrian hamster myosarcoma. These cells were found to express mRNA for A1 and some as yet unidentified P2Y receptor(s).2. Activation of either receptor type stimulated the production of InsP3 and raised intracellular calcium in DDT1 MF2 cells. Similarly, the A1 selective agonist N6-cyclopentylade- nosine (CPA) increased PKC-dependent phosphorylation of the substrate MBP4–14 and induced a PKC translocation to the plasma membrane as determined using [3H]-phorbol dibutyrate (PDBu) binding in DDT1 MF-2 cells. However, neither adenosine nor CPA induced a significant translocation of transiently transfected -PKC-GFP from the cytosol to the cell membrane. In contrast to adenosine analogues, ATP and UTP also caused a rapid but transient translocation of -PKC-GFP and activation of PKC.3. Doses of the A1 agonist CPA and of ATP or UTP per se caused barely detectable increases in intracellular Ca2+ but when combined, they caused an almost maximal stimulation. Similarly, adenosine (0.6 M) and UTP (or ATP, 2.5 M), which per se caused no detectable translocation of either - or -PKC-GFP, caused when combined a very clear-cut translocation of both PKC subforms, albeit with different time courses. These results show that simultaneous activation of P2Y and adenosine A1 receptors synergistically increases Ca2+ transients and translocation of PKC in DDT1 MF-2 cells. Since adenosine is rapidly formed by breakdown of extracellular ATP, such interactions may be biologically important.  相似文献   
107.
ATP, UTP, ADP and UDP induced intracellular Ca(2+) responses and oscillations in HeLa cells that sometimes lasted over 1 h. The response is due to the activation of P2Ys, G-protein coupled ATP receptors, because the oscillations persisted for several minutes even in Ca(2+)-free solution, and suramin and PPADS, antagonists of ATP receptors, partially inhibited the response. The potency of these nucleotides varied with the culture or cell conditions, i.e. UTP was generally most potent but in some cases UDP was more potent; responses to UDP were variable while those to ATP were constant. In addition, Ca(2+) responses to ATP and UDP were additive. These findings suggested the existence of two or more subtypes of P2Ys in HeLa cells. RT-PCR experiments revealed the existence of P2Y(2), P2Y(4) and P2Y(6). Recovery from starvation (culture in FBS-free medium overnight and re-addition of FBS) increased the responses to UTP and UDP but not to ATP, suggesting that the number or activity of P2Y(6) and/or P2Y(4) receptors may increase with cell proliferation in HeLa cells.  相似文献   
108.
It has been long postulated that extracellular purines can modulate the function of the male reproductive system by interacting with different purinergic receptors of Sertoli and germinative cells. Many authors have described the biological changes induced by extracellular ATP and/or adenosine in these cells, and some hypothetical models for paracrine communication mediated by purines were proposed; however, the cellular source(s) of these molecules in seminiferous tubules remains unknown. In this study, we demonstrated for the first time that Sertoli cells are able to release ATP (0.3 nmol/mg protein) and adenosine (0.1 nmol/mg protein) in the extracellular medium, while germinative and myoid peritubular cells are able to secrete adenosine (0.02 and 0.37 nmol/mg protein, respectively). Indeed, all the three types of cells were able to release inosine at significant concentrations (about 0.4 nmol/mg protein). This differential secretion depending on the cellular type suggests that these molecules may be involved in the paracrine regulation and/or control of the maturation processes of these cells.  相似文献   
109.
The presynaptic dopamine (DA) D2 receptor-mediated regulation of ATP-sensitive potassium (K+ ATP) channels was examined in slices of the rat caudate-putamen. When slices were incubated with the specific D2 receptor antagonist (–)-sulpiride (SLP), a concentration-dependent increase of extracellular DA release was observed. SLP-induced enhancement was completely antagonized by coincubation with the K+ ATP channel opener diazoxide (DIA). Treatment of slices with the D2 receptor agonist quinpirole (QUI) almost completely inhibited DA outflow induced by the K+ ATP channel blocker butanedione-monoxime (BDM). Coincubation of SLP and guanosine triphosphate (GTP) or its non-hydrolizable analogue guanylyl-5-imidodiphosphate [Gpp(NH)p], significantly reduced the SLP-induced effect on DA levels. Furthermore, we observed that BDM-induced DA outflow was markedly inhibited by G protein activators suggesting an additional receptor-independent regulation of K+ ATP channel gating. Our results suggest that PTX-sensitive G proteins are involved in the signal transduction between D2 receptors and K+ ATP channels. Furthermore, K+ ATP channels can be modulated in a receptor-independent mechanism by G protein activators.  相似文献   
110.
Glutamate is to be considered a nociceptive neurotransmitter and glutamatergic antagonists present antinoceptive activity. In this study we investigated the effects of the naturally occurring antinociceptive compounds rutin, geraniin and quercetine extracted from Phyllanthus, as well as the diterpene jatrophone, extracted from Jatropha elliptica on the binding of [3H]glutamate and [3H]GMP-PNP [a GTP analogue which binds to extracellular site(s), modulating the glutamatergic transmission] in rat brain membrane. Jatrophone inhibited [3H]glutamate binding and geraniin inhibited [3H]GMP-PNP binding. Quercetine inhibited the binding of both ligands. These results may indicate a neurochemical parameter possibly related to the antinoceptive activity of these natural compounds.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号